Publications by authors named "Martin Michalowski"

Artificial Intelligence (AI) is transforming the landscape of health care and nursing research and education. As key stakeholders in this transformation, nursing faculty are crucial in driving strategic and operational AI initiatives to develop appropriate competence within the workforce to ensure the safe application of these technologies in nursing and care. To discuss the ways nursing faculty can be actively involved in AI initiatives, a panel was convened at the Third International Workshop on Artificial Intelligence in Nursing (AINurse24).

View Article and Find Full Text PDF

Objective: Recent advancements in large language models (LLMs) have led to multimodal LLMs (MLLMs), which integrate multiple data modalities beyond text. Although MLLMs show promise, there is a gap in the literature that empirically demonstrates their impact in healthcare. This paper summarizes the applications of MLLMs in healthcare, highlighting their potential to transform health practices.

View Article and Find Full Text PDF

Objectives: This review paper comprehensively summarizes healthcare provider (HCP) evaluation of explanations produced by explainable artificial intelligence methods to support point-of-care, patient-specific, clinical decision-making (CDM) within medical settings. It highlights the critical need to incorporate human-centered (HCP) evaluation approaches based on their CDM needs, processes, and goals.

Materials And Methods: The review was conducted in Ovid Medline and Scopus databases, following the Institute of Medicine's methodological standards and PRISMA guidelines.

View Article and Find Full Text PDF

Aims: To explore the potential of multimodal large language models in alleviating the documentation burden on nurses while enhancing the quality and efficiency of patient care.

Design: This position paper is informed by expert discussions and a literature review.

Methods: We extensively reviewed nursing documentation practices and advanced technologies, such as multimodal large language models.

View Article and Find Full Text PDF

The ethics of artificial intelligence (AI) are increasingly recognized due to concerns such as algorithmic bias, opacity, trust issues, data security, and fairness. Specifically, machine learning algorithms, central to AI technologies, are essential in striving for ethically sound systems that mimic human intelligence. These technologies rely heavily on data, which often remain obscured within complex systems and must be prioritized for ethical collection, processing, and usage.

View Article and Find Full Text PDF

Background: A whole person approach to healthy aging can provide insight into social factors that may be critical. Digital technologies, such as mobile health (mHealth) applications, hold promise to provide novel insights for healthy aging and the ability to collect data between clinical care visits. Machine learning/artificial intelligence methods have the potential to uncover insights into healthy aging.

View Article and Find Full Text PDF

Unlabelled: The multimorbidity problem involves the identification and mitigation of adverse interactions that occur when multiple computer interpretable guidelines are applied concurrently to develop a treatment plan for a patient diagnosed with multiple diseases. Solving this problem requires decision support approaches which are difficult to comprehend for physicians. As such, the rationale for treatment plans generated by these approaches needs to be provided.

View Article and Find Full Text PDF

This article examines the potential of generative artificial intelligence (AI), such as ChatGPT (Chat Generative Pre-trained Transformer), in nursing education and the associated challenges and recommendations for their use. Generative AI offers potential benefits such as aiding students with assignments, providing realistic patient scenarios for practice, and enabling personalized, interactive learning experiences. However, integrating generative AI in nursing education also presents challenges, including academic integrity issues, the potential for plagiarism and copyright infringements, ethical implications, and the risk of producing misinformation.

View Article and Find Full Text PDF

We present a fully automated AI-based system for intensive monitoring of cognitive symptoms of neurotoxicity that frequently appear as a result of immunotherapy of hematologic malignancies. Early manifestations of these symptoms are evident in the patient's speech in the form of mild aphasia and confusion and can be detected and effectively treated prior to onset of more serious and potentially life-threatening impairment. We have developed the Automated Neural Nursing Assistant (ANNA) system designed to conduct a brief cognitive assessment several times per day over the telephone for 5-14 days following infusion of the immunotherapy medication.

View Article and Find Full Text PDF

The evidence is growing that machine and deep learning methods can learn the subtle differences between the language produced by people with various forms of cognitive impairment such as dementia and cognitively healthy individuals. Valuable public data repositories such as TalkBank have made it possible for researchers in the computational community to join forces and learn from each other to make significant advances in this area. However, due to variability in approaches and data selection strategies used by various researchers, results obtained by different groups have been difficult to compare directly.

View Article and Find Full Text PDF

Clinical practice guidelines (CPGs) are patient management tools that synthesize medical knowledge into an actionable format. CPGs are disease specific with limited applicability to the management of complex patients suffering from multimorbidity. For the management of these patients, CPGs need to be augmented with secondary medical knowledge coming from a variety of knowledge repositories.

View Article and Find Full Text PDF

Objective: The study has dual objectives. Our first objective (1) is to develop a community-of-practice-based evaluation methodology for knowledge-intensive computational methods. We target a whitebox analysis of the computational methods to gain insight on their functional features and inner workings.

View Article and Find Full Text PDF

This editorial article aims to highlight advances in artificial intelligence (AI) technologies in five areas: Collaborative AI, Multimodal AI, Human-Centered AI, Equitable AI, and Ethical and Value-based AI in order to cope with future complex socioeconomic and public health issues.

View Article and Find Full Text PDF

Poor social functioning is an emerging public health problem associated with physical and mental health consequences. Developing prognostic tools is critical to identify individuals at risk for poor social functioning and guide interventions. We aimed to inform prediction models of social functioning by evaluating models relying on bio-behavioral data using machine learning.

View Article and Find Full Text PDF

Critical care nurses manage complex patient care interventions under dynamic, time-sensitive and constrained conditions, yet clinical decision support systems for nurses are limited compared with advanced practice healthcare providers. In this work, we study and analyze nurses' information-seeking behaviors to inform the development of a clinical decision support system that supports nurses. Nurses from an urban midwestern hospital were recruited to complete an online survey containing eight open-ended questions about resource utilization for various nursing tasks and open space for additional insights.

View Article and Find Full Text PDF

Multimorbidity, the coexistence of two or more health conditions, has become more prevalent as mortality rates in many countries have declined and their populations have aged. Multimorbidity presents significant difficulties for Clinical Decision Support Systems (CDSS), particularly in cases where recommendations from relevant clinical guidelines offer conflicting advice. A number of research groups are developing computer-interpretable guideline (CIG) modeling formalisms that integrate recommendations from multiple Clinical Practice Guidelines (CPGs) for knowledge-based multimorbidity decision support.

View Article and Find Full Text PDF

Background: Research on technologies based on artificial intelligence in healthcare has increased during the last decade, with applications showing great potential in assisting and improving care. However, introducing these technologies into nursing can raise concerns related to data bias in the context of training algorithms and potential implications for certain populations. Little evidence exists in the extant literature regarding the efficacious application of many artificial intelligence -based health technologies used in healthcare.

View Article and Find Full Text PDF

We propose a methodological framework to support the development of personalized courses that improve patients' understanding of their condition and prescribed treatment. Inspired by Intelligent Tutoring Systems (ITSs), the framework uses an eLearning ontology to express domain and learner models and to create a course. We combine the ontology with a procedural reasoning approach and precompiled plans to operationalize a design across disease conditions.

View Article and Find Full Text PDF

Aim: To develop a consensus paper on the central points of an international invitational think-tank on nursing and artificial intelligence (AI).

Methods: We established the Nursing and Artificial Intelligence Leadership (NAIL) Collaborative, comprising interdisciplinary experts in AI development, biomedical ethics, AI in primary care, AI legal aspects, philosophy of AI in health, nursing practice, implementation science, leaders in health informatics practice and international health informatics groups, a representative of patients and the public, and the Chair of the ITU/WHO Focus Group on Artificial Intelligence for Health. The NAIL Collaborative convened at a 3-day invitational think tank in autumn 2019.

View Article and Find Full Text PDF

As the population ages, patients' complexity and the scope of their care is increasing. Over 60% of the population is 65 years of age or older and suffers from multi-morbidity, which is associated with two times as many patient-physician encounters. Yet clinical practice guidelines (CPGs) are developed to treat a single disease.

View Article and Find Full Text PDF

When deciding about surgical treatment options, an important aspect of the decision-making process is the potential risk of complications. A risk assessment performed by a spinal surgeon is based on their knowledge of the best available evidence and on their own clinical experience. The objective of this work is to demonstrate the differences in the way spine surgeons perceive the importance of attributes used to calculate risk of post-operative and quantify the differences by building individual formal models of risk perceptions.

View Article and Find Full Text PDF