Publications by authors named "Martin Buschmann"

Background: In magnetic resonance (MR)-only radiotherapy (RT) workflows, synthetic computed tomography images (sCT) are needed as a surrogate for a dose calculation. Commercial and certified sCT algorithms became recently available, but many have not been evaluated in a clinical setting, especially in the head and neck tumor (HN) region. In this study, an MRI-only workflow using a commercial sCT generator for photon beam therapy in brain and HN body sites was evaluated in terms of dose calculation accuracy, modelling of immobilization devices, as well as usability for autosegmentation.

View Article and Find Full Text PDF

Background And Purpose: Active breathing motion management in radiotherapy consists of motion monitoring, quantification and mitigation. It is impacted by associated latencies of a few 100 ms. Artificial neural networks can successfully predict breathing motion and eliminate latencies.

View Article and Find Full Text PDF

Additive manufacturing and 3D printing allow for the design and rapid production of radiographic phantoms for X-ray imaging, including CT. These are used for numerous purposes, such as patient simulation, optimization of imaging procedures and dose levels, system evaluation and quality assurance. However, standard 3D printing polymers do not mimic X-ray attenuation properties of tissues like soft, adipose, lung or bone tissue, and standard materials like liquid water.

View Article and Find Full Text PDF

Background And Purpose: Tools for auto-segmentation in radiotherapy are widely available, but guidelines for clinical implementation are missing. The goal was to develop a workflow for performance evaluation of three commercial auto-segmentation tools to select one candidate for clinical implementation.

Materials And Methods: One hundred patients with six treatment sites (brain, head-and-neck, thorax, abdomen, and pelvis) were included.

View Article and Find Full Text PDF

Purpose: To investigate the feasibility of a thermo-optical surface imaging (SGRT) system combined with room-based stereoscopic X‑ray image guidance (IGRT) in a dedicated breast deep inspiration breath-hold (DIBH) irradiation workflow. In this context, benchmarking of portal imaging (EPID) and cone-beam CT (CBCT) against stereoscopic X‑rays was performed.

Methods: SGRT + IGRT data of 30 left-sided DIBH breast patients (1 patient with bilateral cancer) treated in 351 fractions using thermo-optical surface imaging and X-ray IGRT were retrospectively analysed.

View Article and Find Full Text PDF

Recently, 3D printing has been widely used to fabricate medical imaging phantoms. So far, various rigid 3D printable materials have been investigated for their radiological properties and efficiency in imaging phantom fabrication. However, flexible, soft tissue materials are also needed for imaging phantoms for simulating several clinical scenarios where anatomical deformations is important.

View Article and Find Full Text PDF

89Anatomic models have an important role in the medical domain. However, soft tissue mechanical properties' representation is limited in mass-produced and 3D-printed models. In this study, a multi-material 3D printer was used to print a human liver model featuring tuned mechanical and radiological properties, with the goal of comparing the printed model with its printing material and real liver tissue.

View Article and Find Full Text PDF

Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar.

View Article and Find Full Text PDF

Objectives: To develop and validate a simple approach for building cost-effective imaging phantoms for Cone Beam Computed Tomography (CBCT) using a modified Polyjet additive manufacturing technology where a single material can mimic a range of human soft-tissue radiation attenuation.

Materials And Methods: Single material test phantoms using a cubic lattice were designed in 3-Matic 15.0 software .

View Article and Find Full Text PDF

Objective: The authors sought to evaluate clinical outcome in patients with large, high-risk brain metastases (BMs) treated with different dose strategies by use of two-fraction dose-staged Gamma Knife radiosurgery (GKRS).

Methods: A retrospective analysis was performed with data from 142 patients from two centers who had been treated with two-fraction dose-staged GKRS between June 2015 and January 2020. Depending on the changes in marginal dose between the first (GKRS1) and second (GKRS2) GKRS treatments, the study population was divided into three treatment groups: dose escalation, dose maintenance, and dose de-escalation.

View Article and Find Full Text PDF

Current medical imaging phantoms are usually limited by simplified geometry and radiographic skeletal homogeneity, which confines their usage for image quality assessment. In order to fabricate realistic imaging phantoms, replication of the entire tissue morphology and the associated CT numbers, defined as Hounsfield Unit (HU) is required. 3D printing is a promising technology for the production of medical imaging phantoms with accurate anatomical replication.

View Article and Find Full Text PDF

Additive manufacturing and 3D printing is particularly useful in the production of phantoms for medical imaging applications including determination and optimization of (diagnostic) image quality and dosimetry. Additive manufacturing allows the leap from simple slab and stylized to (pseudo)-anthropomorphic phantoms. This necessitates the use of materials with x-ray attenuation as close as possible to that of the tissues or organs mimicked.

View Article and Find Full Text PDF

Purpose: Predicting morbidity for patients with locally advanced cervix cancer after external beam radiotherapy (EBRT) based on dose-volume parameters remains an unresolved issue in definitive radiochemotherapy. The aim of this prospective study was to correlate patient characteristics and dose-volume parameters to various early morbidity endpoints for different EBRT techniques, including volumetric modulated arc therapy (VMAT) and adaptive radiotherapy (ART).

Methods And Materials: The study population consisted of 48 patients diagnosed with locally advanced cervix cancer, treated with definitive radiochemotherapy including image-guided adaptive brachytherapy (IGABT).

View Article and Find Full Text PDF

Cone beam computed tomography (CBCT) has become a vital tool in interventional radiology. Usually, a circular source-detector trajectory is used to acquire a three-dimensional (3D) image. Kinematic constraints due to the patient size or additional medical equipment often cause collisions with the imager while performing a full circular rotation.

View Article and Find Full Text PDF

Objective: Recent developments on synthetically generated CTs (sCT), hybrid MRI linacs and MR-only simulations underlined the clinical feasibility and acceptance of MR guided radiation therapy. However, considering clinical application of open and low field MR with a limited field of view can result in truncation of the patient's anatomy which further affects the MR to sCT conversion. In this study an acquisition protocol and subsequent MR image stitching is proposed to overcome the limited field of view restriction of open MR scanners, for MR-only photon and proton therapy.

View Article and Find Full Text PDF

Purpose: We developed a target-based cone beam computed tomography (CBCT) imaging framework for optimizing an unconstrained three dimensional (3D) source-detector trajectory by incorporating prior image information. Our main aim is to enable a CBCT system to provide topical information about the target using a limited angle noncircular scan orbit with a minimal number of projections. Such a customized trajectory should include enough information to sufficiently reconstruct a particular volume of interest (VOI) under kinematic constraints, which may result from the patient size or additional surgical or radiation therapy-related equipment.

View Article and Find Full Text PDF

Conventional medical imaging phantoms are limited by simplified geometry and radiographic skeletal homogeneity, which confines their usability for image quality assessment and radiation dosimetry. These challenges can be addressed by additive manufacturing technology, colloquially called 3D printing, which provides accurate anatomical replication and flexibility in material manipulation. In this study, we used Computed Tomography (CT)-based modified PolyJet 3D printing technology to print a hollow thorax phantom simulating skeletal morphology of the patient.

View Article and Find Full Text PDF

Background: For several tumor entities, automated treatment planning has improved plan quality and planning efficiency, and may enable adaptive treatment approaches. Whole-pelvic prostate radiotherapy (WPRT) involves large concave target volumes, which present a challenge for volumetric arc therapy (VMAT) optimization. This study evaluates automated VMAT planning for WPRT-VMAT and compares the results with manual expert planning.

View Article and Find Full Text PDF

Background: Radiotherapy for cervix cancer is challenging in patients exhibiting large daily changes in the pelvic anatomy, therefore adaptive treatments (ART) have been proposed. The aim of this study was the clinical implementation and subsequent evaluation of plan-of-the-day (POTD)-ART for cervix cancer in supine positioning. The described workflow was based on standard commercial equipment and current quality assurance (QA) methods.

View Article and Find Full Text PDF

Background And Purpose: Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage.

Material And Methods: Weekly CT and daily CBCT scans were delineated for 10 patients.

View Article and Find Full Text PDF

Purpose: Radiation treatment planning inherently involves multiple conflicting planning goals, which makes it a suitable application for multicriteria optimization (MCO). This study investigates a MCO algorithm for VMAT planning (VMAT-MCO) for prostate cancer treatments including pelvic lymph nodes and uses standard inverse VMAT optimization (sVMAT) and Tomotherapy planning as benchmarks.

Methods: For each of ten prostate cancer patients, a two stage plan was generated, consisting of a stage 1 plan delivering 22Gy to the prostate, and a stage 2 plan delivering 50.

View Article and Find Full Text PDF