Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs.
View Article and Find Full Text PDFGlob Chang Biol
October 2022
Macroalgal communities have an essential role in the shallow benthic habitats of temperate seas, where changes in their composition can resonate through entire coastal ecosystems. As all major ecosystems on Earth, algal beds have already been affected by multiple disturbances. Passive conservation tools, such as marine protected areas or No-take zones, have the potential to reduce some of the anthropogenic impacts by limiting human activity.
View Article and Find Full Text PDFClimate change threatens coastal benthic communities on a global scale. However, the potential effects of ongoing warming on mesophotic temperate reefs at the community level remain poorly understood. Investigating how different members of these communities will respond to the future expected environmental conditions is, therefore, key to anticipating their future trajectories and developing specific management and conservation strategies.
View Article and Find Full Text PDFUnderstanding how no-take zones (NTZs) shape the population dynamics of key herbivores is crucial for the conservation and management of temperate benthic communities. Here, we examine the recovery patterns of sea urchin populations following a high-intensity storm under contrasting protection regimes in the NW Mediterranean Sea. We found significant differences in the recovery trends of Paracentrotus lividus abundance and biomass in the five years following the storm.
View Article and Find Full Text PDFClimate change threatens the structure and function of marine ecosystems, highlighting the importance of understanding the response of species to changing environmental conditions. However, thermal tolerance determining the vulnerability to warming of many abundant marine species is still poorly understood. In this study, we quantified in the field the effects of a temperature anomaly recorded in the Mediterranean Sea during the summer of 2015 on populations of two common sympatric bryozoans, Myriapora truncata and Pentapora fascialis.
View Article and Find Full Text PDF