Aims: The isolated human umbilical vein is a robust contractile bioassay for ligands of the bradykinin (BK) B2 receptor (B2R), also extendable to B1 receptor (B1R) pharmacology. We hypothesized that, as a freshly isolated vessel, it also contains traces of plasma proteins that may confer responses to exogenous proteases via the formation of kinins.
Main Methods: Rings of human umbilical veins were mounted in organ baths containing Krebs buffer maintained at 37°C and purified proteases were introduced in the bathing fluid along with additional drugs/proteins that permit mechanistic analysis of effects.
Pharmacol Res Perspect
March 2015
Tissue kallikrein (KLK-1), a serine protease, initiates the release of bradykinin (BK)-related peptides from low-molecular weight kininogen. KLK-1 and the BK B2 receptor (B2R) mediate beneficial effects on the progression of type 2 diabetes and renal disease, but the precise role of KLK-1 independent of its kinin-forming activity remains unclear. We used DM199, a recombinant form of human KLK-1, along with the isolated human umbilical vein, a robust bioassay of the B2R, to address the previous claims that KLK-1 directly binds to and activates the human B2R, with possible receptor cleavage.
View Article and Find Full Text PDFThe kallikrein-kinin system (KKS) comprises a cascade of proteolytic enzymes and biogenic peptides that regulate several physiological processes. Over-expression of tissue kallikrein-1 and modulation of the KKS shows beneficial effects on insulin sensitivity and other parameters relevant to type 2 diabetes mellitus. However, much less is known about the role of kallikreins, in particular tissue kallikrein-1, in type 1 diabetes mellitus (T1D).
View Article and Find Full Text PDFModulation of the kallikrein-kinin system (KKS) has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D). The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1), as a potential novel therapeutic for T2D.
View Article and Find Full Text PDF