Publications by authors named "Mark D Mulcair"

We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS).

View Article and Find Full Text PDF

The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent.

View Article and Find Full Text PDF

Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3-mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death.

View Article and Find Full Text PDF

SPRY domain-containing SOCS box protein 2 (SPSB2) regulates inducible nitric oxide synthase (iNOS) by targeting it for proteasomal degradation. Inhibiting this interaction prolongs the intracellular lifetime of iNOS, leading in turn to enhanced killing of infectious pathogens such as bacteria and parasites. SPSB2 recognizes a linear motif (DINNN) in the disordered N-terminus of iNOS, and ligands that target the DINNN binding site on SPSB2 are potentially novel anti-infective agents.

View Article and Find Full Text PDF

The sequence of Gid1 (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthologue from barley. This was expressed in E. coli, and produced a protein that was able to bind GA in vitro with both structural specificity and saturability.

View Article and Find Full Text PDF

During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression.

View Article and Find Full Text PDF