Mol Ther Methods Clin Dev
September 2025
We previously described the use of recombinant adeno-associated virus (AAV) gene therapy to achieve off-the-shelf, long-term T cell engagement for CD19+ B cell malignancies following a single dose by expressing a transgene encoding a bispecific diabody termed GP101. Here we describe the selection and development of a clinical lead construct, VNX-101, with enhanced safety and efficacy features. A single dose of the virus was effective at eliminating B cell malignancies in humanized mouse xenograft models.
View Article and Find Full Text PDFWe previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular antiviral response which increases viral transcript presence in the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection.
View Article and Find Full Text PDFFront Immunol
July 2024
[This corrects the article DOI: 10.3389/fimmu.2024.
View Article and Find Full Text PDFWe previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection.
View Article and Find Full Text PDFMol Ther Oncolytics
June 2023
The use of oncolytic viruses (OVs) and adoptive cell therapies (ACT) have independently emerged as promising approaches for cancer immunotherapy. More recently, the combination of such agents to obtain a synergistic anticancer effect has gained attention, particularly in solid tumors, where immune-suppressive barriers of the microenvironment remain a challenge for desirable therapeutic efficacy. While adoptive cell monotherapies may be restricted by an immunologically cold or suppressive tumor microenvironment (TME), OVs can serve to prime the TME by eliciting a wave of cancer-specific immunogenic cell death and inducing enhanced antitumor immunity.
View Article and Find Full Text PDFT cells redirected to cancer cells either via a chimeric antigen receptor (CAR-T) or a bispecific molecule have been breakthrough technologies; however, CAR-T cells require individualized manufacturing and bispecifics generally require continuous infusions. We created an off-the-shelf, single-dose solution for achieving prolonged systemic serum levels of protein immunotherapeutics via adeno-associated virus (AAV) gene transfer. We demonstrate proof of principle in a CD19 lymphoma xenograft model using a single intravenous dose of AAV expressing a secreted version of blinatumomab, which could serve as a universal alternative for CD19 CAR-T cell therapy.
View Article and Find Full Text PDFOsteosarcoma remains one of the deadliest cancers in pediatrics and young adults. We administered two types of immunotherapies, oncolytic virotherapy and immune checkpoint inhibition, to two murine osteosarcoma models and observed divergent results. Mice bearing F420 showed no response, whereas those with K7M2 showed prolonged survival in response to combination therapy.
View Article and Find Full Text PDFObjectives: This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity.
Methods: The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components.
Seprehvir (HSV1716) is an oncolytic herpes simplex virus-1 (HSV-1) previously demonstrated to be well tolerated in pediatric patients when administered intratumorally. To determine the safety of administering Seprehvir systemically, we conducted the first-in-human phase I trial of intravenous injection in young patients with relapsed or refractory extra-cranial solid cancers. We delivered a single dose of 5 × 10 infectious units (iu)/kg (maximum dose of 2 × 10) or 2.
View Article and Find Full Text PDFEwing sarcoma is a highly aggressive cancer that promotes the infiltration and activation of pro-tumor M2-like macrophages. Oncolytic virotherapy that selectively infects and destroys cancer cells is a promising option for treating Ewing sarcoma. The effect of tumor macrophages on oncolytic virus therapy, however, is variable among solid tumors and is unknown in Ewing sarcoma.
View Article and Find Full Text PDFMol Cancer Ther
August 2017
Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.
View Article and Find Full Text PDFHSV1716 is an oncolytic herpes simplex virus-1 (HSV-1) studied in adults via injection into the brain and superficial tumors. To determine the safety of administering HSV1716 to pediatric patients with cancer, we conducted a phase I trial of image-guided injection in young patients with relapsed or refractory extracranial cancers. We delivered a single dose of 10 to 10 infectious units of HSV1716 via computed tomography-guided intratumoral injection and measured tumor responses by imaging.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy.
View Article and Find Full Text PDFPurpose: We describe a novel class of antitumor amphiphilic amines (RCn) based on a tricyclic amine hydrophilic head and a hydrophobic linear alkyl tail of variable length.
Methods: We tested the lead compound, RC16, for cytotoxicity and mechanism of cell death in several cancer cell lines, anti tumor efficacy in mouse tumor models, and ability to encapsulate chemotherapy drugs.
Results: These compounds displayed strong cytotoxic activity against cell lines derived from both pediatric and adult cancers.
Multiple studies have indicated that in addition to direct oncolysis, virotherapy promotes an antitumor cytotoxic T cell response important for efficacy. To study this phenomenon further, we tested three syngeneic murine sarcoma models that displayed varied degrees of permissiveness to oncolytic herpes simplex virus replication and cytotoxicity in vitro, with the most permissive being comparable to some human sarcoma tumor lines. The in vivo antitumor effect ranged from no or modest response to complete tumor regression and protection from tumor rechallenge.
View Article and Find Full Text PDFPexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients.
View Article and Find Full Text PDFUnderstanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFCancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector.
View Article and Find Full Text PDFHigh levels of expression of the human DEK gene have been correlated with numerous human malignancies. Intracellular DEK functions have been described in vitro and include DNA supercoiling, DNA replication, RNA splicing, and transcription. We have shown that DEK also suppresses cellular senescence, apoptosis, and differentiation, thus promoting cell growth and survival in monolayer and organotypic epithelial raft models.
View Article and Find Full Text PDFOncolytic herpes simplex virus (oHSV) mutants are under development as anticancer therapeutics. One such vector, rRp450, is ICP6-deleted and expresses a prodrug enzyme for cyclophosphamide (CPA) (rat CYP2B1). Little is known about rRp450's toxicity profile, especially in combination with CPA.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumors (MPNSTs), driven in part by hyperactive Ras and epidermal growth factor receptor (EGFR) signaling, are often incurable. Testing of therapeutics for MPNST has been hampered by lack of adequate xenograft models. We previously documented that human MPNST cells are permissive for lytic infection by oncolytic herpes simplex viruses (oHSV).
View Article and Find Full Text PDFNovel methods of local control for sarcomas are needed. We investigated the antitumor effect of two related herpes simplex virus (HSV) mutants, NV1020 and NV1066, on human rhabdomyosracoma cells and xenografts. Cell death correlated with virus replication and apoptosis in cultured cells and tumors.
View Article and Find Full Text PDFBackground: High-risk neuroblastoma (Nb) is incurable using current treatment regimens in the majority of patients. Oncolytic virotherapy is a novel approach being tested for several types of adult cancers.
Objectives: To compare the susceptibility of Nb tumor models to oncolytic adenovirus and HSV mutants and delineate the mechanisms of resistance or sensitivity.
J Pediatr Hematol Oncol
October 2002
Purpose: Attenuated viruses derived from adenoviruses (Ad) that kill tumor cells (oncolysis) are currently in clinical trials for selected cancers. Some cancers have proven resistant to Ad infection due to low expression of viral receptors. The authors sought to determine whether members of the Ewing sarcoma family of tumors (ESFTs) express Ad receptors and are sensitive to Ad-mediated oncolysis.
View Article and Find Full Text PDF