J Open Source Softw
January 2025
MATLAB Instrument Control (MIC) is a software package designed to facilitate data collection for custom-built microscopes. Utilizing object-oriented programming, MIC provides a class for each low-level instrument. These classes inherit from a common MIC abstract class, ensuring a uniform interface across different instruments.
View Article and Find Full Text PDFPurpose To evaluate the safety and feasibility of a novel hybrid nuclear and fluoroscopy C-arm scanner to be used during the work-up procedure of hepatic radioembolization. Materials and Methods In this prospective first-in-human clinical study, 12 participants (median age, 67 years [range: 37-78 years]; nine [75%] male, three [25%] female) with liver tumors undergoing work-up for yttrium 90 radioembolization were included (ClinicalTrials.gov NCT06013774).
View Article and Find Full Text PDFBackground: Subtraction of single-photon emission computed tomography (SPECT) images has a number of clinical applications in e.g. foci localization in ictal/inter-ictal SPECT and defect detection in rest/stress cardiac SPECT.
View Article and Find Full Text PDFJ Open Source Softw
October 2023
Fluorescence single molecule imaging comprises a variety of techniques that involve detecting individual fluorescent molecules. Many of these techniques involve localizing individual fluorescent molecules with precisions below the diffraction limit, which limits the spatial resolution of (visible) light-based microscopes. These methodologies are widely used to image biological structures at the nanometer scale by fluorescently tagging the structures of interest, elucidating details of the biological behavior observed.
View Article and Find Full Text PDFVisualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality.
View Article and Find Full Text PDFThe identification of biomarkers associated with major depressive disorder (MDD) holds great promise to develop an objective laboratory test. However, current biomarkers lack discriminative power due to the complex biological background, and not much is known about the influence of potential modifiers such as gender. We first performed a cross-sectional study on the discriminative power of biomarkers for MDD by investigating gender differences in biomarker levels.
View Article and Find Full Text PDFBasement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing.
View Article and Find Full Text PDFIn single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density.
View Article and Find Full Text PDFActivation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS.
View Article and Find Full Text PDFPodosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive.
View Article and Find Full Text PDFBiomed Opt Express
June 2016
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light.
View Article and Find Full Text PDFPodosomes are micrometer-sized, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. Because of their small size and the lack of methods to visualize individual proteins and protein complexes, podosomes have long been considered a simple two-module structure with a protrusive actin core and a surrounding adhesive ring composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. In the past decade, the applications of fluorescence based techniques that circumvent the diffraction limit of conventional light microscopy took a major leap forward.
View Article and Find Full Text PDFMany processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs) and report biochemical changes in the microenvironment. Dendritic cells (DCs) are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2) via four GPCR subtypes (EP1-4) critically regulates DC generation, maturation and migration.
View Article and Find Full Text PDFMicrosc Microanal
February 2013
Podosomes are cellular adhesion structures involved in matrix degradation and invasion that comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image processing difficult.
View Article and Find Full Text PDFPhagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity.
View Article and Find Full Text PDF