In most plant species, sepals-the outermost floral organs-provide a protective shield for reproductive organs. How the floral bud becomes sealed is unknown. In Arabidopsis, we identified a small region at the sepal tip that is markedly curved inward early on and remains curved even after anthesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the stem, where the tensile stress pattern is both highly anisotropic and stable.
View Article and Find Full Text PDFTo relate gene networks and organ shape, one needs to address two wicked problems: i) Gene expression is often variable locally, and shape is reproducible globally; ii) gene expression can have cascading effects on tissue mechanics, with possibly counterintuitive consequences for the final organ shape. Here, we address such wicked problems, taking advantage of simpler plant organ development where shape only emerges from cell division and elongation. We confirm that mutation in VERNALIZATION INDEPENDENCE 3 (), a subunit of the conserved polymerase-associated factor 1 complex (Paf1C), increases gene expression variability in Arabidopsis.
View Article and Find Full Text PDFThe de-methylesterification of the pectic polysaccharide homogalacturonan (HG) by pectin methylesterases (PMEs) is a critical step in the control of plant cell expansion and morphogenesis. Plants have large gene families encoding PMEs but also PME inhibitors (PMEIs) with differ in their biochemical properties. The gene is frequently used as a tool to manipulate pectin methylesterase activity in studies assessing its role in the control of morphogenesis.
View Article and Find Full Text PDFTo survive, cells must constantly resist mechanical stress. In plants, this involves the reinforcement of cell walls, notably through microtubule-dependent cellulose deposition. How wall sensing might contribute to this response is unknown.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
August 2021
Four marine bacterial strains were isolated from a thallus of the brown alga collected in Roscoff, France. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, gliding, rod-shaped and grew optimally at 25-30 °C, at pH 7-8 and with 2-4 % NaCl. Phylogenetic analyses of their 16S rRNA gene sequences showed that the bacteria were affiliated to the genus (family , phylum ).
View Article and Find Full Text PDFPlant Physiol
November 2019
The shoot apical meristem (SAM) gives rise to all aerial plant organs. Cell walls are thought to play a central role in this process, translating molecular regulation into dynamic changes in growth rate and direction, although their precise role in morphogenesis during organ formation is poorly understood. Here, we investigated the role of xyloglucans (XyGs), a major, yet functionally poorly characterized, wall component in the SAM of Arabidopsis ().
View Article and Find Full Text PDFThe growth of plants, like that of other walled organisms, depends on the ability of the cell wall to yield without losing its integrity. In this context, plant cells can sense the perturbation of their walls and trigger adaptive modifications in cell wall polymer interactions. Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1) was previously shown in Arabidopsis to trigger growth inhibition and defense responses upon perturbation of the cell wall, but so far, neither the ligand nor the role of the receptor in normal development was known.
View Article and Find Full Text PDFPerturbation of cellulose synthesis in plants triggers stress responses, including growth retardation, mediated by the cell wall integrity-sensing receptor-like kinase (RLK) THESEUS1 (THE1). The analysis of two alleles carrying T-DNA insertions at comparable positions has led to conflicting conclusions concerning the impact of THE1 signaling on growth. Here we confirm that, unlike the1-3 and other the1 alleles in which cellular responses to genetic or pharmacological inhibition of cellulose synthesis are attenuated, the1-4 showed enhanced responses, including growth inhibition, ectopic lignification, and stress gene expression.
View Article and Find Full Text PDFAlga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria.
View Article and Find Full Text PDFBacteria degrading algal polysaccharides are key players in the global carbon cycle and in algal biomass recycling. Yet the water column, which has been studied largely by metagenomic approaches, is poor in such bacteria and their algal-polysaccharide-degrading enzymes. Even more surprisingly, the few published studies on seaweed-associated microbiomes have revealed low abundances of such bacteria and their specific enzymes.
View Article and Find Full Text PDFA metagenomic library was constructed from microorganisms associated with the brown alga Ascophyllum nodosum. Functional screening of this library revealed 13 novel putative esterase loci and two glycoside hydrolase loci. Sequence and gene cluster analysis showed the wide diversity of the identified enzymes and gave an idea of the microbial populations present during the sample collection period.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2014
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems.
View Article and Find Full Text PDFCommun Agric Appl Biol Sci
August 2013