Understanding how chemical modifications alter the atomic-scale organization of materials is of fundamental importance in materials engineering and the target of considerable efforts in computational prediction. Incorporating covalent and non-covalent interactions in designing crystals while "piggybacking" on the driving force of molecular self-assembly has augmented our efforts to understand the emergence of complex structures using directed synthesis. Here, we prepared microcrystalline powders of the silver 2-, 3-, and 4-fluorobenzenethiolates and resolved their structures by small molecule serial femtosecond X-ray crystallography (smSFX).
View Article and Find Full Text PDFNew synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.
View Article and Find Full Text PDF