Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4).
View Article and Find Full Text PDFThe COVID-19 pandemic has caused considerable interest worldwide in antiviral surfaces, and there has been a dramatic increase in the research and development of innovative material systems to reduce virus transmission in the past few years. The International Organization for Standardization (ISO) norms 18,184 and 21,702 are two standard methods to characterize the antiviral properties of porous and non-porous surfaces. However, during the last years of the pandemic, a need for faster and inexpensive characterization of antiviral material was identified.
View Article and Find Full Text PDFcysteine-rich protective antigen (CyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield CyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) homotrimeric spike (S) protein is responsible for mediating host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, thus being a key viral antigen to target in a coronavirus disease 19 (COVID-19) vaccine. Despite the availability of COVID-19 vaccines, low vaccine coverage as well as unvaccinated and immune compromised subjects are contributing to the emergence of SARS-CoV-2 variants of concern. Therefore, continued development of novel and/or updated vaccines is essential for protecting against such new variants.
View Article and Find Full Text PDFA virosomal vaccine inducing systemic/mucosal anti-HIV-1 gp41 IgG/IgA had previously protected Chinese-origin rhesus macaques (RMs) against vaginal SHIV challenges. Here, we assessed its efficacy in Indian-origin RMs by intramuscular priming/intranasal boosting (n=12/group). Group K received virosome-P1-peptide alone (harboring the Membrane Proximal External Region), Group L combined virosome-rgp41 plus virosome-P1, and Group M placebo virosomes.
View Article and Find Full Text PDFBackground: Whereas sublingual allergen immunotherapy (AIT) is routinely performed without any adjuvant or delivery system, there is a strong scientific rationale to better target the allergen(s) to oral dendritic cells known to support regulatory immune responses by using appropriate presentation platforms.
Objective: To identify a safe presentation platform able to enhance allergen-specific tolerance induction.
Methods: Virosomes with membrane-integrated contiguous overlapping peptides (COPs) of Bet v 1 and TLR4 or TLR2/TLR7 agonists were assessed for induction of Bet v 1-specific IgG1, IgG2a and IgE antibodies, hypersensitivity reactions and body temperature drop following subcutaneous injection in naive CD-1 mice.
The main objective of the MACIVIVA European consortium was to develop new Good Manufacturing Practice pilot lines for manufacturing thermostable vaccines with stabilized antigens on influenza virosomes as enveloped virus-like particles. The HIV-1 gp41-derived antigens anchored in the virosome membrane, along with the adjuvant 3M-052 (TLR7/8 agonist) on the same particle, served as a candidate vaccine for the proof of concept for establishing manufacturing processes, which can be directly applied or adapted to other virosomal vaccines or lipid-based particles. Heat spray-dried powders suitable for nasal or oral delivery, and freeze-dried sublingual tablets were successfully developed as solid dosage forms for mucosal vaccination.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2020
The () cysteine-rich protective antigen (CyRPA) has emerged as a promising blood-stage candidate antigen for inclusion into a broadly cross-reactive malaria vaccine. This highly conserved protein among various geographical strains plays a key role in the red blood cell invasion process by merozoites, and antibodies against CyRPA can efficiently prevent the entry of the malaria parasites into red blood cells. The aim of the present study was to develop a human-compatible formulation of the CyRPA vaccine candidate and confirming its activity in preclinical studies.
View Article and Find Full Text PDFPulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments.
View Article and Find Full Text PDFThe respiratory tract with its ease of access, vast surface area and dense network of antigen-presenting cells (APCs) represents an ideal target for immune-modulation. Bio-mimetic nanocarriers such as virosomes may provide immunomodulatory properties to treat diseases such as allergic asthma. In our study we employed a triple co-culture model of epithelial cells, macrophages and dendritic cells to simulate the human airway barrier.
View Article and Find Full Text PDFUnlabelled: Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis.
View Article and Find Full Text PDFThis study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load.
View Article and Find Full Text PDFThe basic concept of virosomes is the controlled in vitro assembly of virus-like particles from purified components. The first generation of influenza virosomes developed two decades ago is successfully applied in licensed vaccines, providing a solid clinical safety and efficacy track record for the technology. In the meantime, a second generation of influenza virosomes has evolved as a carrier and adjuvant system, which is currently applied in preclinical and clinical stage vaccine candidates targeting various prophylactic and therapeutic indications.
View Article and Find Full Text PDFUnlabelled: Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101).
View Article and Find Full Text PDFA novel vaccine (PEV7) consisting of a truncated, recombinant aspartyl proteinase-2 of Candida albicans incorporated into influenza virosomes was studied. This vaccine candidate generated a potent serum antibody response in mouse and rat following intramuscular immunization. Anti-Sap2 IgG and IgA were also detected in the vaginal fluid of rats following intravaginal or intramuscular plus intravaginal administration.
View Article and Find Full Text PDFBackground: In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP.
Methods: The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs.
Influenza virosomes have been used for more than 10 years in commercial vaccines. The technology has been further developed as a carrier and adjuvant system for subunit vaccines, in particular for synthetic peptides. The extensive amount of preclinical and clinical data supports the notion that influenza virosomes represent a platform technology that ensures robust and long-lasting immune responses against subunit antigens with an excellent safety profile.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV)-1 is mainly transmitted mucosally during sexual intercourse. We therefore evaluated the protective efficacy of a vaccine active at mucosal sites. Macaca mulatta monkeys were immunized via both the intramuscular and intranasal routes with an HIV-1 vaccine made of gp41-subunit antigens grafted on virosomes, a safe delivery carrier approved in humans with self-adjuvant properties.
View Article and Find Full Text PDFPhagocytosis of fine particles (1 microm) by macrophages is a ligand-receptor-mediated, actin-based process, whereas the entering of smaller particles (< or = 0.2 microm) in macrophages occurs also by other mechanisms. Virosomes with a diameter of 0.
View Article and Find Full Text PDFThe BM86 antigen, originally identified in Rhipicephalus (Boophilus) microplus, is the basis of the only commercialized anti-tick vaccine. The long-term goal of our study is to improve BM86 based vaccines by induction of high levels of tick gut binding antibodies that are also cross-reactive with a range of BM86 homologues expressed in other important tick species. Here we have used a BD86 derived synthetic peptide, BD86-3, to raise a series of mouse monoclonal antibodies.
View Article and Find Full Text PDFAlthough respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors.
View Article and Find Full Text PDFPresentation of synthetic peptides on immunopotentiating reconstituted influenza virosomes is a promising technology for subunit vaccine development. An optimized virosomally delivered peptide representing 5 NPNA repeats of P. falciparum circumsporozoite protein is highly immunogenic in mice.
View Article and Find Full Text PDF