Publications by authors named "Marina Kolesnichenko"

Article Synopsis
  • The use of "Wildling mice" with a natural microbiome presents a unique research tool for studying human-like immune systems, but poses challenges for animal husbandry due to their diverse microbial content.
  • A specialized facility was created at Charité - Universitätsmedizin Berlin to manage these mice, incorporating unique designs and protocols for hygiene and microbiome containment.
  • The study shows that "Wildling mice" develop distinct immune cell populations compared to SPF mice, suggesting that using these mice could improve the relevancy of preclinical findings for human health.
View Article and Find Full Text PDF

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation.

View Article and Find Full Text PDF
Article Synopsis
  • Helicobacter pylori is a pathogen that causes chronic gastritis by colonizing deep in the stomach, leading to increased R-spondin 3 (Rspo3) signaling and gland hyperplasia.
  • Lgr4 plays a crucial role in regulating Lgr5 expression, necessary for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone does not drive this process.
  • R-spondin signaling through Lgr4 enhances stem cell proliferation and activates NF-κB, linking epithelial stem cell behavior with inflammatory responses during H. pylori infection.
View Article and Find Full Text PDF

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used.

View Article and Find Full Text PDF

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct.

View Article and Find Full Text PDF

The IκB kinase (IKK)-NF-κB signaling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signaling, these involve either knockouts of a single family member of NF-κB or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess.

View Article and Find Full Text PDF

Persistent NF-κB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection, soluble factors, and tumor-microenvironment interactions contribute to this activation. Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-κB activation, we have dissected the secretome of cultured cHL cells by chromatography and subsequent mass spectrometry.

View Article and Find Full Text PDF

The IκB kinase (IKK) is considered to control gene expression primarily through activation of the transcription factor NF-κB. However, we show here that IKK additionally regulates gene expression on post-transcriptional level. IKK interacted with several mRNA-binding proteins, including a Processing (P) body scaffold protein, termed enhancer of decapping 4 (EDC4).

View Article and Find Full Text PDF

Numerous stimuli, including oncogenic signaling, DNA damage or eroded telomeres trigger proliferative arrest, termed cellular senescence. Accumulating evidence suggests that cellular senescence is a potent barrier to tumorigenesis in vivo, however oncogene induced senescence can also promote cellular transformation. Several oncogenes, whose overexpression results in cellular senescence, converge on the TOR (target of rapamycin) pathway.

View Article and Find Full Text PDF

PLZF can function as a transcriptional activator or as a transcriptional repressor. Recent studies have identified two direct transcriptional targets of PLZF, REDD1 and smooth muscle α-actin. REDD1 is activated by PLZF.

View Article and Find Full Text PDF

Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-β-III (TUBB3).

View Article and Find Full Text PDF

The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs).

View Article and Find Full Text PDF

PDK-1 is a protein kinase that is critical for the activation of many downstream protein kinases in the AGC superfamily, through phosphorylation of the activation loop site on these substrates. Cells lacking PDK-1 show decreased activity of these protein kinases, including protein kinase B (PKB) and p70S6K, whereas mTOR activity remains largely unaffected. Here we show, by assessing both association of cellular RNAs with polysomes and by metabolic labeling, that PDK-1-/- embryonic stem (ES) cells exhibit defects in mRNA translation.

View Article and Find Full Text PDF