Pharmaceuticals (Basel)
April 2025
Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to investigate the analgesic effect and mechanism of action of FBP in a model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain in mice.
View Article and Find Full Text PDFOxidative stress (OS) induced by an imbalance in reactive oxygen species (ROS) levels in vitro impairs embryonic development. Here, we assessed the effects of alpha-lipoic acid (ALA) in in vitro production media on OS reduction, embryonic development, and cryotolerance of bovine embryos. We evaluated the effects of adding different concentrations of ALA (2.
View Article and Find Full Text PDFFoodborne diseases are a major challenge in the global food industry, especially those caused by multidrug-resistant (MDR) bacteria. Bacteria capable of biofilm formation, in addition to MDR strains, reduce the treatment efficacy, posing a significant threat to bacterial control. Bacteriophages, which are viruses that infect and kill bacteria, are considered a promising alternative in combating MDR bacteria, both in human medicine and animal production.
View Article and Find Full Text PDFPain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment.
View Article and Find Full Text PDFIntroduction: Available studies have shown the involvement of nitric oxide (NO) in the processes that lead to neurodegeneration in Parkinson's disease (PD). Also, the use of inhibitors of the inducible isoform of NO-synthase (iNOS) promotes neuroprotection and attenuates dopamine (DA) loss in experimental models of Parkinsonism. In addition, NO also appears to be involved in cardiovascular changes in 6-hydroxydopamine (6-OHDA)-induced Parkinsonism.
View Article and Find Full Text PDF