Publications by authors named "Maria Cicale"

Homer proteins are associated with both dopaminergic and glutamatergic function. In addition, these proteins are implicated in many signal transduction pathways that are also putative targets of the mood stabilizers lithium and valproate (VPA). This study investigated the effect of in vivo chronic administration of therapeutically-relevant doses of lithium and VPA on the expression of the inducible (Homer1a and ania-3) and constitutive (Homer1b/c) isoforms of the Homer1 gene in rat brain, and of two other Homer-related genes: Inositol 1,4,5 trisphosphate receptor (IP3R) and Shank.

View Article and Find Full Text PDF

Tottering (tg) mice carry a missense mutation in the gene coding for P/Q-type voltage-dependent Ca(2+) channels (VDCCs). Aberrant functioning of P/Q-type VDCCs results in molecular alterations in Ca(2+) currents and in glutamate and dopamine systems. As a consequence, tottering mice exhibit mild ataxia, spontaneous epilepsy, and paroxysmal dyskinesia.

View Article and Find Full Text PDF

Homer1a and Yotiao are two post-synaptic density proteins at the crossroad of dopamine-glutamate neurotransmission. Homer1a has been implicated in the pathophysiology of schizophrenia and is differentially induced by typical and atypical antipsychotics, perhaps according to their dopaminergic profile. Yotiao has been involved in glutamate and dopamine post-synaptic signalling.

View Article and Find Full Text PDF

In previous studies we found that the GTPase p21 Harvey-Ras (Ha-Ras) stimulates the production of reactive oxygen species and induces apoptosis by oxidative stress; this effect was reversed by farnesyl transferase inhibitors (FTIs). In this study we investigated whether FTIs reduce rat brain damage induced by an excitotoxic stimulus, and the signalling pathway(s) underlying the neuroprotection by FTIs. In brain tissue, protein levels of Ha-Ras and farnesylation inhibition were assayed by Western blot, and superoxide production was measured by hydroethidine.

View Article and Find Full Text PDF

Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium-calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective distribution in the rat brain.

View Article and Find Full Text PDF