Efficient learning about disease dynamics in free-ranging wildlife systems can benefit from active surveillance that is standardized across different ecological contexts. For example, active surveillance that targets specific individuals and populations with standardized sampling across ecological contexts (landscape-scale targeted surveillance) is important for developing a mechanistic understanding of disease emergence, which is the foundation for improving risk assessment of zoonotic or wildlife-livestock disease outbreaks and predicting hotspots of disease emergence. However, landscape-scale targeted surveillance systems are rare and challenging to implement.
View Article and Find Full Text PDFWildlife surveillance programs often use serological data to monitor exposure to pathogens. Diagnostic sensitivity and specificity of a serological assay quantify the true positive and negative rates of the diagnostic assay, respectively. However, an assay's accuracy can be affected by wild animals' pathogen exposure history and quality of the sample collected, requiring separate estimates of an assay's detection ability for wild-sampled animals where an animal's true disease status is unknown (referred to hereafter as sampling sensitivity and specificity).
View Article and Find Full Text PDFAppl Environ Microbiol
September 2024
Unlabelled: Tick-borne pathogen emergence is dependent on the abundance and distribution of competent hosts in the environment. ticks are generalist feeders, and their pathogen infection prevalence depends on their relative feeding on local competent and non-competent hosts. The ability to determine what host a larval life stage tick fed on can help predict infection prevalence, emergence, and spread of certain tick-borne pathogens and the risks posed to public health.
View Article and Find Full Text PDFEmerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts.
View Article and Find Full Text PDFAlthough the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I.
View Article and Find Full Text PDFThe range of hosts a pathogen can infect is a key trait, influencing human disease risk and reservoir host infection dynamics. sensu stricto (), an emerging zoonotic pathogen, causes Lyme disease and is widely considered a host generalist, commonly infecting mammals and birds. Yet the extent of intraspecific variation in host breadth, its role in determining host competence, and potential implications for human infection remain unclear.
View Article and Find Full Text PDF() and () are vector-borne zoonotic pathogens commonly found co-circulating in and populations. The restricted distribution and lower prevalence of has been historically attributed to lower host-to-tick transmission efficiency and limited host ranges. We hypothesized that prevalence patterns are driven by coinfection dynamics and vertical transmission.
View Article and Find Full Text PDFThe prevalence of diseases borne by mosquitoes, particularly in the genus Aedes, is rising worldwide. This has been attributed, in part, to the dramatic rates of contemporary urbanization. While Aedes-borne disease risk varies within and between cities, few investigations use urban science-based approaches to examine how city structure and function contribute to vector or pathogen introduction and maintenance.
View Article and Find Full Text PDFHost association-the selective adaptation of pathogens to specific host species-evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi complex, including B. burgdorferi (), the main LD pathogen in North America-a useful model for the study of mechanisms underlying host-pathogen association.
View Article and Find Full Text PDFShifts in activity patterns during the COVID-19 pandemic might have impacted the benefits of outdoor activities for mental health. By leveraging an existing mobile application, we collected self-reported data on daily outdoor activities, emotional well-being, and the influence of COVID-19 on participant's outdoor activity levels during April-July 2020. Individuals reporting outdoor activities, in greenspaces or in their residence, had higher well-being scores and this effect increased with age.
View Article and Find Full Text PDFPredicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP).
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements.
View Article and Find Full Text PDFPathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B.
View Article and Find Full Text PDFTick-borne illnesses have been on the rise in the United States, with reported cases up sharply in the past two decades. In this literature review, we synthesize the available research on the relationship between vegetation and tick abundance for four tick species in the northeastern United States that are of potential medical importance to humans. The blacklegged tick (Ixodes scapularis) (Say; Acari: Ixodidae) is found to be positively associated with closed canopy forests and dense vegetation thickets, and negatively associated with open canopy environments, such as grasslands or old agricultural fields.
View Article and Find Full Text PDFWe use mathematical modelling to examine how microbial strain communities are structured by the host specialisation traits and antigenic relationships of their members. The model is quite general and broadly applicable, but we focus on Borrelia burgdorferi, the Lyme disease bacterium, transmitted by ticks to mice and birds. In this system, host specialisation driven by the evasion of innate immunity has been linked to multiple niche polymorphism, while antigenic differentiation driven by the evasion of adaptive immunity has been linked to negative frequency dependence.
View Article and Find Full Text PDFJ Med Entomol
May 2021
The blacklegged tick (Ixodes scapularis Say) is the primary vector of Borrelia burgdorferi sensu stricto (Spirochaetales: Spirochaetaceae), the Lyme disease agent in North America. The basic reproduction number (R0) for B. burgdorferi in I.
View Article and Find Full Text PDFThe incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people's behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States.
View Article and Find Full Text PDFHaemaphysalis longicornis, the Asian longhorned tick, is an invasive tick species that has spread rapidly across the northeastern and southeastern regions of the United States in recent years. This invasive pest species, known to transmit several tick-borne pathogens in its native range, is a potential threat to wildlife, livestock, domestic animals, and humans. Questing larval (n = 25), nymph (n = 10), and adult (n = 123), along with host-derived adult (n = 25) H.
View Article and Find Full Text PDFTicks Tick Borne Dis
November 2020
The dynamics of zoonotic vector-borne diseases are determined by a complex set of parameters including human behavior that may vary with socio-ecological contexts. Lyme disease is the most common vector-borne disease in the United States. The Northeast and upper Midwest are the regions most affected - two areas with differing levels of urbanization and differing sociocultural settings.
View Article and Find Full Text PDFLyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown.
View Article and Find Full Text PDF