Angew Chem Int Ed Engl
September 2019
Metal-organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small-scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one-step synthetic procedure, that is, without the incorporation of extrinsic magnetic components.
View Article and Find Full Text PDFMotile metal-organic frameworks (MOFs) are potential candidates to serve as small-scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc-based MOF, zeolitic imidazole framework-8 (ZIF-8), with biocompatibility characteristics and pH-responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields.
View Article and Find Full Text PDFHere, the catalytic degradation of organic compounds is reported by exploiting the magnetoelectric nature of cobalt ferrite-bismuth ferrite (CFO-BFO) core-shell nanoparticles. The combination of magnetostrictive CFO with multiferroic BFO gives rise to a magnetoelectric engine that purifies water under wireless magnetic fields via advanced oxidation processes, without involvement of any sacrificial molecules or cocatalysts. Magnetostrictive CoFe O nanoparticles are fabricated using hydrothermal synthesis, followed by sol-gel synthesis to create the multiferroic BiFeO shell.
View Article and Find Full Text PDFDesigning new catalysts that can efficiently utilize multiple energy sources can contribute to solving the current challenges of environmental remediation and increasing energy demands. In this work, we fabricated single-crystalline BiFeO (BFO) nanosheets and nanowires that can successfully harness visible light and mechanical vibrations and utilize them for degradation of organic pollutants. Under visible light both BFO nanostructures displayed a relatively slow reaction rate.
View Article and Find Full Text PDFMicro- and nanorobots have shown great potential for applications in various fields, including minimally invasive surgery, targeted therapy, cell manipulation, environmental monitoring, and water remediation. Recent progress in the design, fabrication, and operation of these miniaturized devices has greatly enhanced their versatility. In this report, the most recent progress on the manipulation of small-scale robots based on power sources, such as magnetic fields, light, acoustic waves, electric fields, thermal energy, or combinations of these, is surveyed.
View Article and Find Full Text PDFElectrical and/or electromechanical stimulation has been shown to play a significant role in regenerating various functionalities in soft tissues, such as tendons, muscles, and nerves. In this work, we investigate the piezoelectric polymer polyvinylidene fluoride (PVDF) as a potential substrate for wireless neuronal differentiation. Piezoelectric PVDF enables generation of electrical charges on its surface upon acoustic stimulation, inducing neuritogenesis of PC12 cells.
View Article and Find Full Text PDFAn FeGa@P(VDF-TrFE) wire-shaped magnetoelectric nanorobot is designed and fabricated to demonstrate a proof-of-concept integrated device, which features wireless locomotion and on-site triggered therapeutics with a single external power source (i.e., a magnetic field).
View Article and Find Full Text PDFSuperparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2015
In this paper, we report on the synthesis of FeCo/Cu multisegmented nanowires by means of pulse electrodeposition in nanoporous anodic aluminum oxide arrays supported on silicon chips. By adjustment of the electrodeposition conditions, such as the pulse scheme and the electrolyte, alternating segments of Cu and ferromagnetic FeCo alloy can be fabricated. The segments can be built with a wide range of lengths (15-150 nm) and exhibit a close-to-pure composition (Cu or FeCo alloy) as suggested by energy-dispersive X-ray mapping results.
View Article and Find Full Text PDFThere is a strong interest in studying the cellular uptake of silica nanoparticles, particularly at medically relevant concentrations (ppb-ppm range) to understand their toxicology. At present, uptake analysis at these exposure levels is impeded by the high silica background concentration. Here we describe the use of DNA encapsulated within silica particles as a tool to quantify silica nanoparticles in in vitro cell-uptake experiments at low concentrations (down to 10 fg cell(-1)).
View Article and Find Full Text PDFThe pathophysiology of schizophrenia has not been fully elucidated but there are converging leads to understanding this complex psychiatric disorder. One family of molecules that may play a crucial role in the development of schizophrenia is the eicosanoids. Review of the literature on eicosanoids in patients with schizophrenia points to findings in three areas: precursor molecules such as polyunsaturated fatty acids (PUFAs) and specifically arachidonic acid (AA), the actions of specific eicosanoids such as thromboxane A2 (TxA2), thromboxane B2 (TxB2) and prostaglandin E2 (PGE2), and enzymes with important functions in eicosanoid metabolism such as cyclooxygenase 2 (COX-2).
View Article and Find Full Text PDF