Publications by authors named "Marcus A Triplett"

Determining the intricate structure and function of neural circuits requires the ability to precisely manipulate circuit activity. Two-photon holographic optogenetics has emerged as a powerful tool for achieving this via flexible excitation of user-defined neural ensembles. However, the precision of two-photon optogenetics has been constrained by off-target stimulation, an effect where proximal non-target neurons can be unintentionally activated due to imperfect spatial confinement of light onto target neurons.

View Article and Find Full Text PDF

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections.

View Article and Find Full Text PDF

Two-photon optogenetics has transformed our ability to probe the structure and function of neural circuits. However, achieving precise optogenetic control of neural ensemble activity has remained fundamentally constrained by the problem of off-target stimulation (OTS): the inadvertent activation of nearby non-target neurons due to imperfect confinement of light onto target neurons. Here we propose a novel computational approach to this problem called Bayesian target optimisation.

View Article and Find Full Text PDF

Understanding brain function requires disentangling the high-dimensional activity of populations of neurons. Calcium imaging is an increasingly popular technique for monitoring such neural activity, but computational tools for interpreting extracted calcium signals are lacking. While there has been a substantial development of factor analysis-type methods for neural spike train analysis, similar methods targeted at calcium imaging data are only beginning to emerge.

View Article and Find Full Text PDF

The pattern of neural activity evoked by a stimulus can be substantially affected by ongoing spontaneous activity. Separating these two types of activity is particularly important for calcium imaging data given the slow temporal dynamics of calcium indicators. Here we present a statistical model that decouples stimulus-driven activity from low dimensional spontaneous activity in this case.

View Article and Find Full Text PDF

A key problem in systems neuroscience is to characterize how populations of neurons encode information in their patterns of activity. An understanding of the encoding process is essential both for gaining insight into the origins of perception and for the development of brain-computer interfaces. However, this characterization is complicated by the highly variable nature of neural responses, and thus usually requires probabilistic methods for analysis.

View Article and Find Full Text PDF

Spontaneous activity is a fundamental characteristic of the developing nervous system. Intriguingly, it often takes the form of multiple structured assemblies of neurons. Such assemblies can form even in the absence of afferent input, for instance in the zebrafish optic tectum after bilateral enucleation early in life.

View Article and Find Full Text PDF

The circuit mechanisms that give rise to direction selectivity in the retina have been studied extensively but how direction selectivity is established in retinorecipient areas of the brain is less well understood. Using functional imaging in larval zebrafish we examine how the direction of motion is encoded by populations of neurons at three layers of the optic tectum; retinal ganglion cell axons (RGCs), a layer of superficial inhibitory interneurons (SINs), and periventricular neurons (PVNs), which constitute the majority of neurons in the tectum. We show that the representation of motion direction is transformed at each layer.

View Article and Find Full Text PDF

Obesity is a worldwide epidemic, with major health and economic costs. Here we estimate heritability for body mass index (BMI) in 172,000 sibling pairs and 150,832 unrelated individuals and explore the contribution of genotype-covariate interaction effects at common SNP loci. We find evidence for genotype-age interaction (likelihood ratio test (LRT) = 73.

View Article and Find Full Text PDF