Publications by authors named "Marcel Beier"

The emergence of land plants required adaptations to altered water availability and increased effective gravity. Bryophytes underwent major changes in physiology, anatomy, and growth during their emergence onto land. However, the link between gravity, photosynthesis, and genetic control remains unclear.

View Article and Find Full Text PDF

Abscisic acid (ABA)-mediated abiotic stress tolerance causes plant growth inhibition. Under such stress conditions, some mosses generate stress-resistant stem cells, also called brood cells or brachycytes, that do not exist under normal conditions. However, the cell physiological basis of the growth inhibition and the stem cell formation is not well understood.

View Article and Find Full Text PDF

Ammonium is combined with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase (GS or GLN). Plants harbor several isoforms of cytosolic GS (GS1).

View Article and Find Full Text PDF

Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B.

View Article and Find Full Text PDF

While it is known that plant roots can change their shapes to the stress direction, it remains unclear if the root orientation can change as a means for mechanical reinforcement. When stress in form of a unidirectional vibration is applied to cuttings of for 5 min a day over a period of 20 days, the root system architecture changes. The contribution of roots with a diameter larger than 0.

View Article and Find Full Text PDF

Nitrate is an important nutrient and signaling molecule in plants, which modulates the expression of many genes and regulates plant growth. In paddy-grown rice (Oryza sativa), nitrogen is mostly supplied in the form of ammonium but can also be supplied in the form of nitrate. Several nitrogen transporters and nitrate assimilation enzymes have been identified and functionally characterized in rice.

View Article and Find Full Text PDF

Urea is the most used nitrogenous fertilizer worldwide and an important nitrogen-containing plant metabolite. Despite its major use as fertilizer, its direct uptake is limited due to the ubiquitous presence of bacterial urease, which leads to the formation of ammonium. In this review, we will focus mainly on the more recent research about the high-affinity urea transporter function in nitrogen-deficient conditions.

View Article and Find Full Text PDF

BOR1 is an efflux transporter of boron (B), responsible for loading B into the xylem. It has been reported that nitrate (NO ) concentrations significantly influence B concentrations in leaves and BOR1 mRNA accumulation in roots. Here, to unravel the interactive effects of B and NO on plant growth and the function of BOR1 under the combination of B and NO , seedling growth was analyzed in Col-0 and bor1 mutants.

View Article and Find Full Text PDF

Boron (B) is an essential element in plants but is toxic when it accumulates to high levels. In root cells of Arabidopsis (), the borate exporter BOR1 is polarly localized in the plasma membrane toward the stele side for directional transport of B. Upon high-B supply, BOR1 is rapidly internalized and degraded in the vacuole.

View Article and Find Full Text PDF

Nitrogen is one of the most important elements for plant growth, and urea is one of the most frequently used nitrogen fertilizers worldwide. Besides the exogenously-supplied urea to the soil, urea is endogenously synthesized during secondary nitrogen metabolism. Here, we investigated the contribution of a urea transporter, DUR3, to rice production using a reverse genetic approach combined with localization studies.

View Article and Find Full Text PDF

Ammonium influx into plant roots via the high-affinity transport system (HATS) is down-modulated under elevated external ammonium, preventing ammonium toxicity. In ammonium-fed Arabidopsis, ammonium transporter 1 (AMT1) trimers responsible for HATS activity are allosterically inactivated in a dose-dependent manner via phosphorylation of the conserved threonine at the carboxyl-tail by the calcineurin B-like protein 1-calcineurin B-like protein-interacting protein kinase 23 complex and other yet unidentified protein kinases. Using transcriptome and reverse genetics in ammonium-preferring rice, we revealed the role of the serine/threonine/tyrosine protein kinase gene OsACTPK1 in down-modulation of HATS under sufficient ammonium.

View Article and Find Full Text PDF

Background: Asparagine is one of the most dominant organic nitrogen compounds in phloem and xylem sap in a wide range of plant species. Asparaginase (ASNase; EC, 3.5.

View Article and Find Full Text PDF

Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots.

View Article and Find Full Text PDF

Higher plants have 2 GOGAT species, Fd-GOGAT and NADH-GOGAT. While Fd-GOGAT mainly assimilates ammonium in leaves, which is derived from photorespiration, the function of NADH-GOGAT, which is highly expressed in roots, (1) needs to be elucidated. The aim of this study was to clarify the role of NADH-GOGAT in Arabidopsis roots.

View Article and Find Full Text PDF

In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC).

View Article and Find Full Text PDF