The catalytic asymmetric electrophilic functionalization of the less reactive N-heteroaromatic compounds has been reported using the approach of the introduction of an exocyclic amino substituent. This strategy has allowed enantioselective Friedel-Crafts alkylation in pyrazoles, isoxazoles and isothiazoles, as well as in aminoindoles, aminobenzofurans and aminobenzothiophenes. Several stereoselective methods have been used for the 1,4-addition or 1,2-addition of these heteroaromatic compounds to different electrophiles employing organocatalysts or chiral metal complexes.
View Article and Find Full Text PDFA new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote -symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a -heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the -chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the -chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers.
View Article and Find Full Text PDFH-bonded counterion-directed catalysis (HCDC) is a strategy wherein a chiral anion that is hydrogen-bonded to the achiral ligand of a metal complex is responsible for enantioinduction. In this article we present the application of H-bonded counterion-directed catalysis to the Au(I)-catalyzed enantioselective tandem cycloisomerization-addition reaction of 2-alkynyl enones. Following the addition of C-, N- or O-centered nucleophiles, bicyclic furans were obtained in moderate to excellent yield and enantioselectivity (28 examples, 59-96 % yield, 62 : 38 to 95 : 5 er).
View Article and Find Full Text PDFA Cu(II)/BOX complex catalyses the enantioselective addition of difluorinated silyl enol ethers to acylpyridine -oxides. The reaction provides difluorinated chiral tertiary alcohols of great interest in medicinal chemistry. These compounds are obtained in moderate to excellent yields and with high enantioselectivities.
View Article and Find Full Text PDFChem Sci
November 2021
The -alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds a turnover-limiting electrophilic C-H metalation to the strongly electron-withdrawing nitro group.
View Article and Find Full Text PDFA combined experimental-computational approach has been used to study the cyclopropanation reaction of -hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand.
View Article and Find Full Text PDFNaphthols, hydroxyindoles and an activated phenol are reacted with differently substituted (E)-nitrobut-1-en-3-ynes using the commercially available Rawal's chiral squaramide. The corresponding β-nitroalkynes were obtained with good yields and excellent enantioselectivities. Moreover, dihydronaphthofurans can be accessed via silver catalysed cyclization in a tandem one-pot procedure, with high preservation of the optical purity.
View Article and Find Full Text PDFAlkynylcyclopropanes have found promising applications in both organic synthesis and medicinal chemistry but remain rather underexplored due to the challenges associated with their preparation. We describe a convenient two-step methodology for the alkynylcyclopropanation of alkenes, based on the rhodium(II)-catalyzed decarbenation of 7-alkynyl cycloheptatrienes. The catalytic system employed circumvents a fundamental problem associated with these substrates, which usually evolve via 6--dig cyclization or ring-contraction pathways under metal catalysis.
View Article and Find Full Text PDFA straightforward strategy for the synthesis of unprecedented α-aminoperoxides bearing primary and secondary alkylperoxide substituents is described. Commercially available dialkylzinc reagents are oxidized with molecular oxygen and the consequent peroxide species react with stable (hetero)aromatic and aliphatic α-amido sulfones in excellent yields (>90%). The now available α-aminoperoxides are of potential interest in medicinal chemistry, specifically for the synthesis of antimalarial compounds.
View Article and Find Full Text PDFAsymmetric cyclopropane synthesis currently requires bespoke strategies, methods, substrates, and reagents, even when targeting similar compounds. This approach slows down discovery and limits available chemical space. Introduced herein is a practical and versatile diazocompound and its performance in the first unified asymmetric synthesis of functionalized cyclopropanes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2017
Pyrrolidines are important heterocyclic compounds with endless applications in organic synthesis, metal catalysis, and organocatalysis. Their potential as ligands for first-row transition-metal catalysts inspired a new method to access complex poly-heterocyclic pyrrolidines in one step from available materials. This fundamental step forward is based on the discovery of an essential organoaluminum promoter that engages unactivated and electron-rich olefins in intermolecular [3+2] cycloadditions.
View Article and Find Full Text PDFA Cinchona-derived squaramide catalyzes the reaction between hydroxyindoles and isatins leading to enantioenriched indoles substituted in the carbocyclic ring. The reaction proceeds efficiently with differently substituted isatins, yielding the desired products with excellent regioselectivity, good yields, and high enantiocontrol. Moreover, every position of the carbocyclic ring of the indole can be functionalized by using the appropriate starting hydroxyindole.
View Article and Find Full Text PDFA quinine-derived thiourea organocatalyst promoted the highly enantioselective addition of naphthols and activated phenols to ketimines derived from isatins. The reaction afforded chiral 3-amino-2-oxindoles with a quaternary stereocenter in high yields (up to 99%) with excellent enantioselectivity (up to 99% ee). To the best of our knowledge, this transformation is the first highly enantioselective addition of naphthols to ketimines.
View Article and Find Full Text PDF