Publications by authors named "Manuela Morleo"

An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.

View Article and Find Full Text PDF
Article Synopsis
  • In biomedical research for rare diseases, model organisms are essential for understanding disease mechanisms, identifying biomarkers, and developing therapies.
  • Solve-RD is an EU-funded project focused on addressing numerous previously unresolved rare diseases.
  • The project has led to the creation of the European Rare Disease Models & Mechanisms Network (RDMM-Europe) to enhance research efforts in this area.
View Article and Find Full Text PDF

Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed.

View Article and Find Full Text PDF
Article Synopsis
  • Glutamine synthetase (GS), encoded by the GLUL gene, converts glutamate to glutamine and plays a crucial role in neurotransmitter production and ammonia detoxification in the brain.
  • *Variations in the GLUL gene can lead to severe developmental delays and neurological disorders in infants due to improper regulation of GS levels.
  • *Research indicates that certain genetic mutations can result in a stable but non-regulated form of GS, highlighting the need for careful control of glutamine metabolism during brain development.
View Article and Find Full Text PDF

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12).

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores pre-mRNA splicing, its critical role in neurodevelopment, and how mutations in spliceosome-related genes U2AF2 and PRPF19 contribute to neurodevelopmental disorders (NDDs).
  • - Researchers found multiple pathogenic variants in U2AF2 and PRPF19 across unrelated individuals, with functional analysis showing that specific U2AF2 variants disrupted normal splicing and neuritogenesis in human neurons.
  • - Additionally, investigations in Drosophila models revealed that the loss of function in U2AF2 and PRPF19 caused severe developmental defects and social issues, pointing to a genetic network wherein splicing factors like Rbfox1 play a significant role in brain development and function. *
View Article and Find Full Text PDF

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder.

View Article and Find Full Text PDF

Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 -year-old female, who had a normal status of TCF4. The pathogenic c.

View Article and Find Full Text PDF

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2.

View Article and Find Full Text PDF

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1.

View Article and Find Full Text PDF

The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity).

View Article and Find Full Text PDF

Here we describe three patients with neurodevelopmental disorders characterized by mild-to-moderate intellectual disability, mildly dysmorphic features, and hirsutism, all of which carry de novo sequence variants in the WW domain-containing adaptor of the coiled-coil (WAC) gene; two of these-c.167delA, p.(Asn56I1efs*136) and c.

View Article and Find Full Text PDF

Melanoma is a deadly form of cancer characterized by remarkable therapy resistance. Analyzing the transcriptome of MAPK inhibitor sensitive- and resistant-melanoma, we discovered that APAF-1 is negatively regulated by MITF in resistant tumors. This study identifies the MITF/APAF-1 axis as a molecular driver of MAPK inhibitor resistance.

View Article and Find Full Text PDF

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia.

View Article and Find Full Text PDF
Article Synopsis
  • Intellectual disability (ID) is often linked to genetic defects, with this study identifying 14 SEMA6B gene variants in patients diagnosed with ID but without epilepsy.
  • The researchers conducted experiments showing that these SEMA6B variants affect protein localization and lead to reduced spine density in both cell cultures and chicken embryos, indicating a significant role in neuron development.
  • The findings broaden the understanding of SEMA6B-related conditions, suggesting it is also a contributor to ID, expanding its clinical significance beyond previously known associations with epilepsy.
View Article and Find Full Text PDF

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome.

View Article and Find Full Text PDF

Calcium (Ca) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca pumps that participate in the regulation of intracellular free Ca. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay.

View Article and Find Full Text PDF

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.

View Article and Find Full Text PDF

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy.

View Article and Find Full Text PDF

Autophagy is a cellular self-degradative pathway. Our study unveiled a novel mechanism mediated by OFD1, the protein mutated in Oral-Facial-Digital type I syndrome, based on selective degradation of autophagic proteins, which enables cells to calibrate their self-degradation. We demonstrated that unrestrained autophagy contributes to renal cysts observed in mutants.

View Article and Find Full Text PDF

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease.

View Article and Find Full Text PDF

Background: ZFYVE19 (Zinc Finger FYVE-Type Containing 19) mutations have most recently been associated to a novel type of high gamma-glutamyl transpeptidase (GGT), non-syndromic, neonatal-onset intrahepatic chronic cholestasis possibly associated to cilia dysfunction. Herein, we report a new case with further studies of whole exome sequencing (WES) and immunofluorescence in primary cilia of her cultured fibroblasts which confirm the observation.

Results: A now 5-year-old girl born to clinically healthy consanguineous Moroccan parents was assessed at 59 days of life due to severe cholestatic jaundice with increased serum bile acids and GGT, and preserved hepatocellular synthetic function.

View Article and Find Full Text PDF