Carbon-based nanocomposites coated with iron oxides were synthesized using a wet impregnation method with thermally annealed coal and an iron nitrate precursor. The influence of the thermal treatment atmosphere (air, vacuum, or nitrogen) on the morphology, structure, and magnetic properties of the nanocomposites was examined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. It was found that the vacuum thermal treatment produced carbon-based nanocomposite containing iron oxide with the highest crystallinity, according to XRD analysis, while also inducing the greatest degree of structural defects in the carbon matrix, as evidenced by Raman analysis.
View Article and Find Full Text PDFNat Commun
November 2023
The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds.
View Article and Find Full Text PDFPharmaceutics
December 2022
The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology.
View Article and Find Full Text PDFPolymers (Basel)
December 2022
The development of scaffolds for cell regeneration has increased because they must have adequate biocompatibility and mechanical properties to be applied in tissue engineering. In this sense, incorporating nanofillers or essential oils has allowed new architectures to promote cell proliferation and regeneration of new tissue. With this goal, we prepared four membranes based on polylactic acid (PLA), polycaprolactone (PCL), titanium dioxide nanoparticles (TiO-NPs), and orange essential oil (OEO) by the drop-casting method.
View Article and Find Full Text PDFScaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%.
View Article and Find Full Text PDFIn recent decades, the number of patients requiring biocompatible and resistant implants that differ from conventional alternatives dramatically increased. Among the most promising are the nanocomposites of biopolymers and nanomaterials, which pretend to combine the biocompatibility of biopolymers with the resistance of nanomaterials. However, few studies have focused on the in vivo study of the biocompatibility of these materials.
View Article and Find Full Text PDFScaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind.
View Article and Find Full Text PDFThe development of new biocompatible materials for application in the replacement of deteriorated tissues (due to accidents and diseases) has gained a lot of attention due to the high demand around the world. Tissue engineering offers multiple options from biocompatible materials with easy resorption. Chitosan (CS) is a biopolymer derived from chitin, the second most abundant polysaccharide in nature, which has been highly used for cell regeneration applications.
View Article and Find Full Text PDFMetallophthalocyanine (MPc) and carbon nano-onion (CNO) derivatives were synthesized and characterized by using ultraviolet-visible spectroscopy, infrared and Raman spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray powder diffraction. The unmodified CNOs and MPc-CNO derivatives were used as photocatalysts for rhodamine B (RhB) degradation under visible-light irradiation. The photocatalytic studies revealed that the MPc-CNO nanostructural materials simultaneously exhibited a high absorption capacity and an excellent visible-light-driven photocatalytic activity towards RhB.
View Article and Find Full Text PDFThe design of scaffolding from biocompatible and resistant materials such as carbon nanomaterials and biopolymers has become very important, given the high rate of injured patients. Graphene and carbon nanotubes, for example, have been used to improve the physical, mechanical, and biological properties of different materials and devices. In this work, we report the grafting of carbon nano-onions with chitosan (CS-g-CNO) through an amide-type bond.
View Article and Find Full Text PDFHerein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis.
View Article and Find Full Text PDFBiomolecules
November 2019
Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important alternative to reinforce the mechanical, thermal, and antimicrobial properties of several biopolymers. In this work, five different formulations of chitosan/poly(vinyl alcohol)/oxidized carbon nano-onions (CS/PVA/ox-CNO) were used to prepare biodegradable scaffolds with potential biomedical applications.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2019
Nanostructured capacitive biosensors, combined with inexpensive fabrication technologies, may provide simple, sensitive devices for detecting clinically relevant cancer biomarkers. Herein, we report a novel platform for detecting the pancreatic cancer biomarker CA19-9 using low-cost screen-printed interdigitated electrodes (SPIDEs). The SPIDEs were modified by carbon nano-onions (CNOs) and graphene oxide (GO) films, on which a layer of anti-CA19-9 antibodies was immobilized.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
July 2017
In the title compound, CHNO, the dihedral angle between the aromatic rings is 7.28 (7)° and the almost planar conformation of the mol-ecule is supported by an intra-molecular O-H⋯O hydrogen bond, which closes an (6) ring. In the crystal, weak C-H⋯O hydrogen bonds and aromatic π-π stacking link the mol-ecules into a three-dimensional network.
View Article and Find Full Text PDFThe kinetic and thermodynamic selectivities of imine formation have been investigated for several dynamic covalent libraries of aldehydes and amines. Two systems were examined, involving the reaction of different types of primary amino groups (aliphatic amines, alkoxy-amines, hydrazides and hydrazines) with two types of aldehydes, sulfobenzaldehyde and pyridoxal phosphate in aqueous solution at different pD (5.0, 8.
View Article and Find Full Text PDFHydrazones exhibit a versatile chemistry and are of interest for their potential use as functional molecular systems capable of undergoing reversible changes of configuration, i.e. E/Z isomerization.
View Article and Find Full Text PDFThe structure of the title compound, C16H14O2, features a dihedral angle of 54.4 (3)° between the aromatic rings. The allyl group is rotated by 37.
View Article and Find Full Text PDFVersatile, iterative synthetic protocols to form expanded [n]radialenes have been developed (n=3 and 4), which allow for a variety of groups to be placed around the periphery of the macrocyclic framework. The successful use of the Sonogashira cross-coupling reaction to complete the final ring closure demonstrates the ability of this reaction to tolerate significant ring strain while producing moderate to excellent product yields. The resulting radialenes show good stability under normal laboratory conditions in spite of their strained, cyclic structures.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
January 2013
In the mononuclear title complex, [ZnCl2(C15H16N4O)], the Zn(II) cation is five-coordinated in a strongly distorted square-pyramidal environment by two Cl(-) anions and a neutral tridentate Schiff base ligand. The Zn(II) cation is chelated by the carbonyl O atom, the imine N atom and the pyridine N atom, which causes a slight loss of planarity for the ligand; the dihedral angle between the aromatic rings is 4.61 (8)°.
View Article and Find Full Text PDFHerein we report the preparation of truly soluble CNOs by covalent functionalization with hexadecyl chains. These compounds are prepared in two steps: first, reduction of CNOs with a Na-K alloy in 1,2-DME under vacuum, followed by nucleophilic substitution employing 1-bromohexadecane.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
July 2012
The title compound, C(12)H(10)BrN(3), is essentially planar (r.m.s.
View Article and Find Full Text PDFInhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity.
View Article and Find Full Text PDFThe C=N group of hydrazones can undergo E/Z isomerization both photochemically and thermally, allowing the generation of a closed process that can be tuned by either of these two physical stimuli. On the other hand, hydrazine-exchange reactions enable a constitutional change in a given hydrazone. The two classes of processes: 1) configurational (physically stimulated) and 2) constitutional (chemically stimulated) give access to short-term and long-term information storage, respectively.
View Article and Find Full Text PDF