Publications by authors named "Manuel A Torres Acosta"

Commonly used bisulfite-based procedures for DNA methylation sequencing can degrade DNA, worsening signal-to-noise ratios in samples with low DNA input. Enzymatic methylation sequencing (EM-seq) has been proposed as a less biased alternative for methylation profiling with greater genome coverage. Reduced representation approaches enrich samples for CpG-rich genomic regions, thereby enhancing throughput and cost effectiveness.

View Article and Find Full Text PDF

CD4+FOXP3+ Treg cells maintain self tolerance, suppress the immune response to cancer, and protect against tissue injury during acute inflammation. Treg cells require mitochondrial metabolism to function, but how Treg cells adapt their metabolic programs to optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMPK to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during influenza virus pneumonia.

View Article and Find Full Text PDF

FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1).

View Article and Find Full Text PDF

FOXP3+ regulatory T (Treg) cells are necessary to coordinate resolution of lung inflammation and a return to homeostasis after respiratory viral infections, but the specific molecular requirements for these functions and the cell types governed by Treg cells remain unclear. This question holds significance as clinical trials of Treg cell transfer therapy for respiratory viral infection are being planned and executed. Here, we report causal experiments in mice determining that Treg cells are necessary to control the numbers of activated CD8+ T cells during recovery from influenza infection.

View Article and Find Full Text PDF

While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (T) cell function specifically in the tumor microenvironment. T cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation.

View Article and Find Full Text PDF

CD4+FOXP3+ regulatory T (Treg) cells maintain self-tolerance, suppress the immune response to cancer, and protect against tissue injury in the lung and other organs. Treg cells require mitochondrial metabolism to exert their function, but how Treg cells adapt their metabolic programs to sustain and optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMP-activated protein kinase (AMPK) to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during acute lung injury caused by influenza virus pneumonia.

View Article and Find Full Text PDF

Dual-degree MD-PhD programs have historically lacked diversity of race, ethnicity, gender, sexual orientation, and other facets of identity. Like MD- and PhD-granting programs, MD-PhD program training environments are also marked by structural barriers that negatively impact measurable academic outcomes of underrepresented and/or marginalized students in academic medicine (racial and ethnic minority groups considered underrepresented by the National Institute of Health, sexual and gender minorities, individuals with disabilities, and individuals of low socioeconomic status). In this article, we review the existing literature on MD-PhD program disparities affecting students from these groups and provide recommendations grounded on the reviewed evidence.

View Article and Find Full Text PDF

Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury after viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and SARS coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell prorepair function after lung injury remains unknown.

View Article and Find Full Text PDF

Tregs require Foxp3 expression and induction of a specific DNA hypomethylation signature during development, after which Tregs persist as a self-renewing population that regulates immune system activation. Whether maintenance DNA methylation is required for Treg lineage development and stability and how methylation patterns are maintained during lineage self-renewal remain unclear. Here, we demonstrate that the epigenetic regulator ubiquitin-like with plant homeodomain and RING finger domains 1 (Uhrf1) is essential for maintenance of methyl-DNA marks that stabilize Treg cellular identity by repressing effector T cell transcriptional programs.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has elicited a swift response by the scientific community to elucidate the pathogenesis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-induced lung injury and develop effective therapeutics. Clinical data indicate that severe COVID-19 most commonly manifests as viral pneumonia-induced acute respiratory distress syndrome (ARDS), a clinical entity mechanistically understood best in the context of influenza A virus-induced pneumonia. Similar to influenza, advanced age has emerged as the leading host risk factor for developing severe COVID-19.

View Article and Find Full Text PDF