The mouse zinc finger genes Zfy1 and Zfy2 are essential for male fertility. Recently, we produced Zfy1 knock-out (KO), Zfy2 KO, and Zfy1/2 double-knock-out (Zfy DKO) mice, and found that Zfy DKO males were infertile. The mechanism by which ZFY contributes to reproduction remains unknown but based on predicted protein sequence and in vitro assays we hypothesize that it controls expression of genes essential for spermatogenesis.
View Article and Find Full Text PDFThe H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFSpermatozoa have a unique genome organization. Their chromatin is almost completely devoid of histones and is formed instead of protamines, which confer a high level of compaction and preserve paternal genome integrity until fertilization. Histone-to-protamine transition takes place in spermatids and is indispensable for the production of functional sperm.
View Article and Find Full Text PDFIn addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study -regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest.
View Article and Find Full Text PDFCoffee species such as Coffea canephora P. (Robusta) and C. arabica L.
View Article and Find Full Text PDF