This study presents the design, development, and optimization of multifunctional Doxorubicin (Dox)-loaded Indocyanine Green (ICG) proniosomal gel-derived niosomes, using Design of Experiments (2 factorial model). Herein, the multifunctional proniosomal gel was prepared using the coacervation phase separation technique, which on hydration forms niosomes. The effect of formulation variables on various responses including Zeta potential, Vesicle size, entrapment efficiency of Dox, entrapment efficiency of ICG, Invitro drug release at 72nd hour, and NIR hyperthermia temperature were studied using statistical models.
View Article and Find Full Text PDFBiomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol.
View Article and Find Full Text PDF