Publications by authors named "Manjul Singh"

Gangliosides play important roles in neuroblastoma research through their functions in adhesion, proliferation, and signalling. Researchers have quantified neuroblastoma cells to understand their importance and identify potential diagnostic targets. This study analyses methods for neuroblastoma cell ganglioside quantification.

View Article and Find Full Text PDF

According to Chinese Medicine system, Chinese honeysuckle have a lot of valuable metabolites which have a various potential like anti-inflammatory action, antidiabetic, analgesics, antipyretic, eliminates pollutants etc. According to Chinese Medicinal System, the plant is mentioned to cure various diseases like peptic ulcer, diabetes, inflammation etc. It is frequently given for patients with colds that include fever, headaches, and sore throats, but it may also be used to help people who are overheated or under stress chill down.

View Article and Find Full Text PDF

Objectives: , a member of the Eleocarpaceae family, is valued in Hinduism and Ayurveda, and is frequently used as a remedy for a variety of illnesses. The plant is reputed to treat a number of stomach issues. The purpose of the study was to produce high-quality scientific data regarding gastroprotective behavior, docking experiments with cholinergic receptors, and HPTLC (with lupeol and ursolic acid).

View Article and Find Full Text PDF

The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses.

View Article and Find Full Text PDF

Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits.

View Article and Find Full Text PDF

Purpose: The solubility of drug is affected by various excipients present in formulation. In case of tablet formulation, the role of binders is very important for solubility of dosage form as well as drug. In this study, an attempt was made to improve the solubility and dissolution rate of a drug by the use of natural excipients.

View Article and Find Full Text PDF

Plants possess exuberant plasticity that facilitates its ability to adapt and survive under challenging environmental conditions. The developmental plasticity largely depends upon cellular elongation which is governed by a complex network of environmental and phytohormonal signals. Here, we report role of glucose (Glc) and Glc-regulated factors in controlling elongation growth and shade response in Arabidopsis.

View Article and Find Full Text PDF

Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react.

View Article and Find Full Text PDF

With the increasing evidences of cadmium-induced cognitive deficits associated with brain cholinergic dysfunctions, the present study aimed to decipher molecular mechanisms involved in the neuroprotective efficacy of quercetin in rats. A decrease in the binding of cholinergic-muscarinic receptors and mRNA expression of cholinergic receptor genes (M1, M2, and M4) was observed in the frontal cortex and hippocampus on exposure of rats to cadmium (5.0 mg/kg body weight, p.

View Article and Find Full Text PDF

Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status.

View Article and Find Full Text PDF

Brassinosteroid (BR) and glucose (Glc) regulate many common responses in plants. Here, we demonstrate that under etiolated growth conditions, extensive interdependence/overlap occurs between BR- and Glc-regulated gene expression as well as physiological responses. Glc could regulate the transcript level of 72% of BR-regulated genes at the whole-genome level, of which 58% of genes were affected synergistically and 42% of genes were regulated antagonistically.

View Article and Find Full Text PDF

Glucose (Glc) plays a fundamental role in regulating lateral root (LR) development as well as LR emergence. In this study, we show that brassinosteroid (BR) signaling works downstream of Glc in controlling LR production/emergence in Arabidopsis (Arabidopsis thaliana) seedlings. Glc and BR can promote LR emergence at lower concentrations, while at higher concentrations, both have an inhibitory effect.

View Article and Find Full Text PDF

Sensing and responding toward gravity vector is a complicated and multistep process. Gravity is a constant factor feeding plants with reliable information for the spatial orientation of their organs. Auxin, cytokinin, ethylene and BRs have been the most explored hormones in relation to gravitropism.

View Article and Find Full Text PDF

Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application.

View Article and Find Full Text PDF

This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate.

View Article and Find Full Text PDF

The growth direction of the Arabidopsis (Arabidopsis thaliana) etiolated-seedling hypocotyl is a complex trait that is controlled by extrinsic signals such as gravity and touch as well as intrinsic signals such as hormones (brassinosteroid [BR], auxin, cytokinin, ethylene) and nutrient status (glucose [Glc], sucrose). We used a genetic approach to identify the signaling elements and their relationship underlying hypocotyl growth direction. BR randomizes etiolated-seedling growth by inhibiting negative gravitropism of the hypocotyls via modulating auxin homeostasis for which we designate as reset, not to be confused with the gravity set point angle.

View Article and Find Full Text PDF

Plants have the ability to adjust its physiology and metabolism to the changes of nutrient availability in the environment. Since a number of common responses are regulated by sugar and auxin, the obvious question arises is whether sugar and auxin act interdependently to bring about changes in plant morphology. In the February issue of the PLoS ONE, we presented detailed investigation of glucose and auxin signaling interaction in controlling root growth and development in Arabidopsis thaliana seedlings.

View Article and Find Full Text PDF

Background: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction.

View Article and Find Full Text PDF

ABSTRACT The correlation between anaerobic soil conditions and increased resistance to rice blast disease has long been observed without benefit of an adequate explanation. We researched flood depth, dissolved oxygen (DO), and ethylene relative to expression of partial blast resistance in cvs. M-201, Newbonnet, LaGrue, Mars, and Cypress.

View Article and Find Full Text PDF