Publications by authors named "Mandi J Corenblum"

Effects of aging on neural stem progenitor cells (NSPCs) have been studied in males, but less is known in females. Here we comparatively assess female NSPC biology, both in the subventricular zone and hippocampal dentate gyrus niches, across different ages of F344 rats (2, 6, 9 and 14 months). The rats were ovariectomized (OVX) or remained Intact at each of the aging stages, to assess the role of the female sex hormones, estradiol (E2) and progesterone (P4).

View Article and Find Full Text PDF

While the etiopathology of Parkinson's disease (PD) is complex, mitochondrial dysfunction is established to have a central role. Thus, mitochondria have emerged as targets of therapeutic interventions aiming to slow or modify PD progression. We have previously identified serotonergic 5-HT1F receptors as novel mediators of mitochondrial biogenesis (MB) - the process of producing new mitochondria.

View Article and Find Full Text PDF

Cognitive decline in Parkinson's Disease (PD) is a prevalent and undertreated aspect of disease. Currently, no therapeutics adequately improve this aspect of disease. It has been previously shown that MAS receptor agonism via the glycosylated Angiotensin (1-7) peptide, PNA5, effectively reduces cognitive decline in models of vascular contributions to cognitive impairment and dementia (VCID).

View Article and Find Full Text PDF

Molecularly targeted therapeutics have revolutionized the treatment of BRAF -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAF /NRAS vs.

View Article and Find Full Text PDF

Although it is known that aging affects neural stem progenitor cell (NSPC) biology in fundamental ways, the underlying dynamics of this process are not fully understood. Our previous work identified a specific critical period (CP) of decline in NSPC activity and function during middle age (13-15 months), and revealed the reduced expression of the redox-sensitive transcription factor, NRF2, as a key mediator of this process. Here, we investigated whether augmenting NRF2 expression could potentially mitigate the NSPC decline across the identified CP.

View Article and Find Full Text PDF

The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history.

View Article and Find Full Text PDF

There is great interest in utilizing human induced pluripotent stem cells (hiPSCs) for disease modeling and cell therapeutics due to their patient specificity and characteristic stemness. However, the pluripotency of iPSCs, which is essential to their functionality, must be confirmed before these cells can be used in such applications. While a rigorous characterization of iPSCs, through different cellular and functional assays is necessary to establish their pluripotency, routine assessment of pluripotency maintenance can be achieved more simply and effectively through immunocytochemical techniques.

View Article and Find Full Text PDF

An essential component of developing successful neural stem cell (NSC)-based therapies involves the establishment of methodologies to noninvasively monitor grafted NSCs within brain tissues in real time. In this context, ex vivo labeling with ultrasmall superparamagnetic iron oxide (USPIO) particles has been shown to enable efficient tracking of transplanted NSCs via magnetic resonance imaging (MRI). However, whether and how USPIO labeling affects the intrinsic biology of NSCs is not thoroughly understood, and remains an active area of investigation.

View Article and Find Full Text PDF

Although it is known that the regenerative function of neural stem/progenitor cells (NSPCs) declines with age, causal mechanisms underlying this phenomenon are not understood. Here, we systematically analyze subventricular zone (SVZ) NSPCs, in various groups of rats across the aging spectrum, using in vitro and in vivo histological and behavioral techniques. These studies indicate that although NSPC function continuously declines with advancing age, there is a critical time period during middle age (13-15 months) when a striking reduction in NSPC survival and regeneration (proliferation and neuronal differentiation) occurs.

View Article and Find Full Text PDF

Aim: Here we investigated the neuroprotective potential of systemic CD34(+) human cord blood cells (hCBCs) in a 6-hydroxydopamine rat model of Parkinson's disease.

Methods: Purified CD34(+) hCBCs were intravenously administered to rats subjected to 6-hydroxydopamine 24 h earlier, and behavioral and immunohistological analysis performed.

Results: CD34(+) hCBC administration significantly prevented host nigrostriatal degeneration inducing behavioral recovery in treated rats.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids and represents a novel therapeutic target in cardiovascular disease treatment. We investigated the relationship among sequence variation in the sEH gene (Ephx2), sEH function, and risk of end-organ injury in strains of spontaneously hypertensive rat (SHRs) differing in their susceptibility to develop brain vascular disease. Brain Ephx2 expression was significantly lower in stroke-prone (SHR/A3) than in stroke-resistant (SHR/N) SHRs (5-fold; P<0.

View Article and Find Full Text PDF