Acute lung injury (ALI) is a critical condition with limited treatment options. This study evaluates the therapeutic potential of human fetal lung-derived mesenchymal stem cells (hFL-MSCs) in an experimental model of ALI. Our proof-of-concept findings suggest a paradigm shift in the approach to cell sourcing for lung diseases, proposing that fetal lung cells may be potential targets for stem cell differentiation studies when the derived cells are intended to be used for lung cell therapy.
View Article and Find Full Text PDFIntroduction: For cell-based therapies of lung injury, several cell sources have been extensively studied. However, the potential of human fetal respiratory cells has not been systematically explored for this purpose. Here, we hypothesize that these cells could be one of the top sources and hence, we extensively updated the definition of their phenotype.
View Article and Find Full Text PDFThe concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT.
View Article and Find Full Text PDF