Publications by authors named "Magaly Python"

In vitro and animal studies point to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) as possible mediators of cardiovascular (CV) disease involving several mechanisms such as basal heart rate interference mediated by a mineralocorticoid receptor-dependent L-type calcium channel activation, and a direct pro-inflammatory effect through the engagement of the toll-like receptor (TLR) 2/CD14 complex. Nevertheless, the possible implication of these receptors in the pro-arrhythmogenic effect of anti-apoA-1 antibodies remains elusive. We aimed at determining whether CD14 and TLRs could mediate the anti-apoA-1 IgG chronotropic response in neonatal rat ventricular cardiomyocytes (NRVC).

View Article and Find Full Text PDF

Systemic and intraplaque biomarkers have been widely investigated in clinical cohorts as promising surrogate parameters of cardiovascular vulnerability. In this pilot study, we investigated if systemic and intraplaque levels of calcification biomarkers were affected by treatment with a statin in a cohort of patients with severe carotid stenosis and being asymptomatic for ischemic stroke. Patients on statin therapy had reduced serum osteopontin (OPN), RANKL/osteoprotegerin (OPG) ratio, and MMP-9/pro-MMP-9 activity as compared to untreated patients.

View Article and Find Full Text PDF

Corticosteroids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy, although molecular mechanisms responsible for these effects have not been completely explained. Because mineralocorticoid receptor (MR) antagonists have been demonstrated to be beneficial on the cardiac function, much attention has been given to the action of aldosterone on the heart. However, we have previously shown that both aldosterone and corticosterone in vitro induce a marked acceleration of the spontaneous contractions, as well as a significant cell hypertrophy in isolated neonate rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Autoantibodies to apolipoprotein A-1 (antiapoA-1 IgG) have been shown to be associated with higher resting heart rate and morbidity in myocardial infarction patients and to behave as a chronotropic agent in the presence of aldosterone on isolated neonatal rat ventricular cardiomyocytes (NRVC). We aimed at identifying the pathways accounting for this aldosterone-dependent antiapoA-1 IgG-positive chronotropic effect on NRVC. The rate of regular spontaneous contractions was determined on NRVC in the presence of different steroid hormones and antagonists.

View Article and Find Full Text PDF

Mineralocorticoids and glucocorticoids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy. We previously observed, using isolated neonate rat ventricular cardiomyocytes, that both aldosterone (Aldo) and corticosterone induced in vitro a marked acceleration of the spontaneous contractions of these cells, a phenomenon dependent on the expression of the low threshold T-type calcium channels. Because both mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mediated the chronotropic response to corticosteroids, we characterized the role of each receptor using spironolactone and mifepristone (RU-486) as specific antagonists.

View Article and Find Full Text PDF

Aims: To assess the prognostic value of anti-apolipoprotein A-1 (anti-apoA-1) IgG after myocardial infarction (MI) and its association with major cardiovascular events (MACEs) at 12 months and to determine their association with resting heart rate (RHR), a well-established prognostic feature after MI. Anti-apoA-1 IgG have been reported in MI without autoimmune disease, but their clinical significance remains undetermined.

Methods And Results: A total of 221 consecutive patients with MI were prospectively included, and all completed a 12-month follow-up.

View Article and Find Full Text PDF

The mineralocorticoid receptor is involved in the development of several cardiac dysfunctions, including lethal ventricular arrhythmias associated with heart failure or hyperaldosteronism, but the molecular mechanisms responsible for these effects remain to be clarified. Reexpression of low voltage-activated T-type calcium channels in ventricular myocytes together with other fetal genes during cardiac pathologies could confer automaticity to these cells and would represent a pro-arrhythmogenic condition if occurring in vivo. In the present study, we demonstrated that in isolated neonatal rat ventricular myocytes, corticosteroids selectively induced the expression of a particular isoform of T channel, Ca(V)3.

View Article and Find Full Text PDF

The mineralocorticoid receptor has been implicated in the development of several cardiac pathologies and could participate in the high incidence of lethal ventricular arrhythmias associated with hyperaldosteronism. We have observed previously that aldosterone markedly increases in vitro the rate of spontaneous contractions of isolated neonate rat ventricular myocytes, a putative proarrhythmogenic condition if occurring in vivo. In the present study, we investigated the effect of glucocorticoids, the involvement of the glucocorticoid receptor, and the modulation of their action by redox agents.

View Article and Find Full Text PDF