A positive association between human exposure to environmental pollutants and progression from benign hepatic steatosis to advanced chronic liver diseases has been documented. Among chemicals found in air pollution, polycyclic aromatic hydrocarbons (PAHs) are of particular concern, due to their omnipresence in the environment. Ingestion of contaminated food is the primary route of exposure.
View Article and Find Full Text PDFCell Biol Toxicol
April 2023
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered.
View Article and Find Full Text PDFLiver steatosis has been associated with various etiological factors (obesity, alcohol, environmental contaminants). How those factors work together to induce steatosis progression is still scarcely evaluated. Here, we tested whether phthalates could potentiate death of steatotic hepatocytes when combined with ethanol.
View Article and Find Full Text PDFMarine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction.
View Article and Find Full Text PDF