The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.
View Article and Find Full Text PDFIntroduction: Antibiotic effects on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the mycobiota, the fungal part of the microbiota and how the length of administration influences both microbiota. Here, we examined the effect of antibiotics (ATB) on the composition of bacterial and fungal microbiota and how the administration of CNCM I-745 influences both microbiota.
Methods: In order to get closer to the human microbiota, the mice used in this study were subjected to fecal microbiota transfer (FMT) using human feces and subsequently called human microbiotaassociated (HMA) mice.
Background: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota.
Design: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota.
Objectives: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown.
View Article and Find Full Text PDFFood processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota.
View Article and Find Full Text PDFBackground: Innate immunity genes have been reported to affect susceptibility to inflammatory bowel diseases (IBDs) and colitis in mice. Dectin-1, a receptor for fungal cell wall β-glucans, has been clearly implicated in gut microbiota modulation and modification of the susceptibility to gut inflammation. Here, we explored the role of Dectin-1 and Dectin-2 (another receptor for fungal cell wall molecules) deficiency in intestinal inflammation.
View Article and Find Full Text PDFReshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease.
View Article and Find Full Text PDFPectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT).
View Article and Find Full Text PDFGut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells.
View Article and Find Full Text PDFPesticide residues represent an important category of food contaminants. Furthermore, during food processing, some advanced glycation end-products resulting from the Maillard reaction can be formed. They may have adverse health effects, in particular on the digestive tract function, alone and combined.
View Article and Find Full Text PDFBackground & Aims: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice.
View Article and Find Full Text PDFObjective: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions.
View Article and Find Full Text PDFis the most prevalent fungus identified in the human skin microbiota; originally described at the end of the nineteenth century, this genus is composed of at least 14 species. The role of on the skin remains controversial because this genus has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.).
View Article and Find Full Text PDFBackground & Aims: Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD.
View Article and Find Full Text PDFBread melanoidins are heterogeneous, nitrogen-containing, brown macromolecules generated during the last stages of the Maillard reaction in bread. The aim of this study was to investigate the impact and fate of these bread melanoidins in the human gastrointestinal tract using in vitro systems. Batch systems as well as the TNO gastrointestinal tract were used for studying the digestion of various bread samples.
View Article and Find Full Text PDF