Environmental variation is a key factor shaping microbial communities in wild animals. However, most studies have focussed on separate populations distributed over large spatial scales. How ecological factors shape inter-individual microbiome variation within a single landscape and host population remains poorly understood.
View Article and Find Full Text PDFParents confront multiple aspects of offspring demands and need to coordinate different parental care tasks. Biparental care is considered to evolve under circumstances where one parent is not competent for all tasks and cannot efficiently raise offspring. However, this hypothesis is difficult to test, as uniparental and biparental care rarely coexist.
View Article and Find Full Text PDFBackground: Gut microbiotas play a pivotal role in host physiology and behaviour, and may affect host life-history traits such as seasonal variation in host phenotypic state. Generally, seasonal gut microbiota variation is attributed to seasonal diet variation. However, seasonal temperature and day length variation may also drive gut microbiota variation.
View Article and Find Full Text PDFThe innate immune system is essential for survival, yet many immune traits are highly variable between and within individuals. In recent years, attention has shifted to the role of environmental factors in modulating this variation. A key environmental factor is food availability, which plays a major role in shaping life histories, and may affect resource allocation to immune function through its effect on nutritional state.
View Article and Find Full Text PDFIn socially monogamous species, extra-pair paternity (EPP) is predicted to increase variance in male reproductive success (RS) beyond that resulting from genetic monogamy, thus, increasing the "opportunity for selection" (maximum strength of selection that can act on traits). This prediction is challenging to investigate in wild populations because lifetime reproduction data are often incomplete. Moreover, age-specific variances in reproduction have been rarely quantified.
View Article and Find Full Text PDFCommunal breeding, wherein multiple conspecifics live and reproduce together, may generate short-term benefits in terms of defence and reproduction. However, its carry-over effects remain unclear. We experimentally tested the effects of communal breeding on parental care and reproduction in burying beetles (), which use carcasses as breeding resources and provide parental care to offspring.
View Article and Find Full Text PDFEarly life conditions can affect individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesized that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108-749 days) that were reared in either small or large broods.
View Article and Find Full Text PDFSeasonal variation in innate immunity is often attributed to either temporal environmental variation or to life-history trade-offs that arise from specific annual cycle stages but decoupling them is difficult in natural populations. Here, we effectively decouple seasonal environmental variation from annual cycle stage effects by exploiting cross-seasonal breeding and moult in the tropical Common Bulbul Pycnonotus barbatus. We test how annual cycle stage interacts with a key seasonal environmental variable, rainfall, to determine immunity at population and individual level.
View Article and Find Full Text PDFPredation risk is thought to modify the physiology of prey mainly through the stress response. However, little is known about its potential effects on the immunity of animals, particularly in young individuals, despite the importance of overcoming wounding and pathogen aggression following a predator attack. We investigated the effect of four progressive levels of nest predation risk on several components of the immune system in common blackbird () nestlings by presenting them with four different calls during 1 h: non-predator calls, predator calls, parental alarm calls and conspecific distress calls to induce a null, moderate, high and extreme level of risk, respectively.
View Article and Find Full Text PDFTiming of reproduction in birds is important for reproductive success and is known to depend on environmental cues such as day length and food availability. However, in equatorial regions, where day length is nearly constant, other factors such as rainfall and temperature are thought to determine timing of reproduction. Rainfall can vary at small spatial and temporal scales, providing a highly fluctuating and unpredictable environmental cue.
View Article and Find Full Text PDFTemporal variation in oxidative physiology and its associated immune function may occur as a result of changes in parasite infection over the year. Evidence from field and laboratory studies suggests links between infection risk, oxidative stress, and the ability of animals to mount an immune response; however, the importance of parasites in mediating seasonal change in physiological makeup is still debated. Also, little is known about the temporal consistency of relationships among parasite infestation, markers of oxidative status and immune function in wild animals, and whether variation in oxidative measures can be viewed as a single integrated system.
View Article and Find Full Text PDFMicrobial invasion of egg contents is a cause of embryonic death. To counter infection risks, the embryo is protected physically by the eggshell and chemically by antimicrobial proteins. If microbial pressure drives embryo mortality, then females may have evolved, through natural selection, to adapt their immune investment into eggs.
View Article and Find Full Text PDFTemporally changing environmental conditions occur in most parts of the world and can exert strong pressure on the immune defense of organisms. Seasonality may result in changes in physiological traits over the year, and such changes may be essential for the optimization of defense against infections. Evidence from field and laboratory studies suggest the existence of links between environmental conditions, such as infection risk, and the ability of animals to mount an immune response or to overcome infections; however, the importance of parasites in mediating seasonal change in immune defense is still debated.
View Article and Find Full Text PDFTrade-offs between immune function and other physiological and behavioural processes are central in ecoimmunology, but one important problem is how to distinguish a reallocation of resources away from the immune system from a reallocation or redistribution within the immune system. While variation in baseline values of individual immune parameters is well established, studies in wild animals on multiple parameters during an immune response are lacking. It also remains to be tested whether and how immune responses correlate with baseline values that vary, for example, over the course of an annual cycle.
View Article and Find Full Text PDFA central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2012
Ecologists sometimes assume immunological indices reflect fundamental attributes of individuals-an important assumption if an index is to be interpreted in an evolutionary context since among-individual variation drives natural selection. Yet the extent to which individuals vary over different timescales is poorly understood. Haptoglobin, an acute phase protein, is an interesting parameter for studying variability as it is easily quantified and concentrations vary widely due to the molecule's role in inflammation, infection and trauma.
View Article and Find Full Text PDFThe immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem.
View Article and Find Full Text PDFOne route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of immune-derived oxidative damage. We successively implemented two experimental manipulations to alter physiological status in a model bird species: the homing pigeon (Columba livia).
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2010
With the rapid development of the field of ecological and evolutionary immunology, a series of new techniques to measure different components of immune function is becoming commonplace. An important step for the interpretation of these new measures is to understand the kind of information about the animal that they convey. We showed that the microbicidal capacity of Stonechat (Saxicola torquata) blood, an integrative measure of constitutive immune function, is highly repeatable when tested against Escherichia coli and not significantly repeatable when tested against Candida albicans.
View Article and Find Full Text PDFDespite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were heritable in a captive-bred population of stonechats (Saxicola torquata spp.) founded on birds from three wild populations (Europe, Africa and Asia) that differed in BMR.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2008
Basal metabolic rate (BMR) and total evaporative water loss (TEWL) are thought to have evolved in conjunction with life history traits and are often assumed to be characteristic features of an animal. Physiological traits can show large intraindividual variation at short and long timescales, yet natural selection can only act on a trait if it is a characteristic feature of an individual. The repeatability of a trait, a measure of the portion of variance that is caused by differences among individuals, indicates if it is a characteristic feature of an individual.
View Article and Find Full Text PDF