Publications by authors named "M Michael Denner"

Tunable quantum materials hold great potential for applications. Of special interest are materials in which small lattice strain induces giant electronic responses. The kagome compounds AVSb (A = K, Rb, Cs) provide a testbed for electronic tunable states.

View Article and Find Full Text PDF
Article Synopsis
  • - The study observes a new type of order, called intra-unit-cell nematic order, in the kagome metal ScVSn, which breaks the crystal's rotational symmetry.
  • - Using advanced scanning techniques, researchers found stripe-like patterns and specific electron behavior that demonstrate this symmetry breaking and the deformation of the Fermi surface.
  • - This research connects the concepts of electronic nematicity with kagome physics, offering insights into how symmetry-broken phases can emerge in materials with correlated electrons.
View Article and Find Full Text PDF

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately.

View Article and Find Full Text PDF

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order.

View Article and Find Full Text PDF