Publications by authors named "Luping Su"

Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems.

View Article and Find Full Text PDF

We present trace gas vertical profiles observed by instruments on the NASA DC-8 and at a ground site during the Korea-US air quality study (KORUS) field campaign in May to June 2016. We focus on the region near the Seoul metropolitan area and its surroundings where both anthropogenic and natural emission sources play an important role in local photochemistry. Integrating ground and airborne observations is the major research goal of many atmospheric chemistry field campaigns.

View Article and Find Full Text PDF

The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques.

View Article and Find Full Text PDF

Oxidation of monoterpenes (CH) by nitrate radicals (NO) constitutes an important source of atmospheric secondary organic aerosol (SOA) and organonitrates. However, knowledge of the mechanisms of their formation is incomplete and differences in yields between similar monoterpenes are poorly understood. In particular, yields of SOA and organonitrates from α-pinene + NO are low, while those from Δ-carene + NO are high.

View Article and Find Full Text PDF