High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance.
View Article and Find Full Text PDFLattice resonances are collective electromagnetic modes supported by periodic arrays of metallic nanostructures. These excitations arise from the coherent multiple scattering between the elements of the array and, thanks to their collective origin, produce very strong and spectrally narrow optical responses. In recent years, there has been significant effort dedicated to characterizing the lattice resonances supported by arrays built from complex unit cells containing multiple nanostructures.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2023
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2022
In view of the existing controversy around the origin of the photosynthesis and, therefore, the first photosynthetic pigments, our work focuses on the theoretical study of a hypothetical first pigment, simpler than those existing today, that collects energy from solar radiation on Earth-like exoplanets. Our theoretical results show that there could exist geochemical conditions that allow the abiotic formation of a primeval pigment that might become sufficiently abundant in the early stages of habitable rocky exoplanets. These conditions would place this pigment before the appearance of life in a very young planet, thanks to chemical routes instead of biochemical transformations.
View Article and Find Full Text PDFJ Chem Theory Comput
May 2022
The theoretical prediction of molecular electronic spectra by means of quantum mechanical (QM) computations is fundamental to gain a deep insight into many photophysical and photochemical processes. A computational strategy that is attracting significant attention is the so-called Nuclear Ensemble Approach (NEA), that relies on generating a representative ensemble of nuclear geometries around the equilibrium structure and computing the vertical excitation energies (Δ) and oscillator strengths () and each transition with a line-shaped function with empirical full-width δ. Frequently, the choice of δ is carried out by visually finding the trade-off between artificial vibronic features (small δ) and over-smoothing of electronic signatures (large δ).
View Article and Find Full Text PDFWe present the first examples of alkylated derivatives of the macropolyhedral boron hydride, -BH, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach.
View Article and Find Full Text PDFStereochemical and steric control of the relative spatial arrangement of the chromophoric units in multichromophoric systems offers an interesting strategy for raising unusual and appealing light-induced emission states. To explore and exploit this strategy, a series of conformationally restricted boron-dipyrromethene (BODIPY) dimers were designed by using tartaric acid as a symmetrical connector between the boron atoms of the dyes. The variety of stereoisomeric forms available for this bis(hydroxy acid) allows the relative spatial orientation of the chromophoric units in the dimer to be modified, which thus opens the door to modulation of the photophysical and chiroptical properties of the new bichromophoric systems.
View Article and Find Full Text PDFThe Variable Stripe Length (VSL) method is a very popular tool to measure the optical gain in thin film active devices. However, over the last decade experimental and theoretical evidence has been reported that cast doubt upon its reliability and that seriously discourages its application. Continuing in the path of highlighting the uncertainties associated with this method, this Letter soundly demonstrates that the particular choice of stripe lengths in the VSL measurements profoundly influences the optical gains retrieved by this method.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2017
The direct generation of efficient, tunable, and switchable circularly polarized laser emission (CPLE) would have far-reaching implications in photonics and material sciences. In this paper, we describe the first chiral simple organic molecules (SOMs) capable of simultaneously sustaining significant chemical robustness, high fluorescence quantum yields, and circularly polarized luminescence (CPL) ellipticity levels (||) comparable to those of similar CPL-SOMs. All these parameters altogether enable efficient laser emission and CPLE with ellipticity levels 2 orders of magnitude stronger than the intrinsic CPL ones.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2017
The generation of circularly polarized laser emission (CPLE) in photonic devices has attracted increasing attention due to the prospects of using CP light in displaying technologies or advanced microscopies. Organic systems excel as laser materials across the whole visible spectrum, and despite many of them displaying circularly polarized luminescence (CPL), none have been shown thus far to amplify their own CPL, let alone generate CPLE. Consequently, there is still a need to find alternative CPLE organic devices.
View Article and Find Full Text PDFN-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
We present a low-temperature versatile protocol for the fabrication of plasma nanocomposite thin films to act as tunable emitters and optical gain media. The films are obtained by the remote plasma-assisted deposition of a 4-(dicyano-methylene)-2-methyl-6-(4-dimethylamino-styryl)-4H-pyran (DCM) laser dye alongside adamantane. The experimental parameters that determine the concentration of the dye in the films and their optical properties, including light absorption, the refractive index, and luminescence, are evaluated.
View Article and Find Full Text PDFThe production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles.
View Article and Find Full Text PDFEmission from electronically excited species forms the basis for an important class of light sources-lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry.
View Article and Find Full Text PDFA straightforward synthetic protocol to directly incorporate stabilized 1,3-dicarbonyl C nucleophiles to the meso position of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3-dicarbonyl derivatives smoothly displace the 8-methylthio group from 8-(methylthio)BODIPY analogues in the presence of Cu(I) thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20-92%) in short reaction times (5-30 min).
View Article and Find Full Text PDFA new library of E- and C-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B-substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron-withdrawing groups enhances the fluorescence response of the dye, whereas electron-donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix.
View Article and Find Full Text PDFThe aim of the present study was to identify brain electrical activity changes generated by olanzapine (OLZ) in treatment refractory schizophrenics (TRS). 14 paranoid TRS (31.5+/-8.
View Article and Find Full Text PDF