Publications by authors named "Lothar Lindemann"

Alpha-Synuclein (α-Syn) is a presynaptic neuronal protein implicated in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, primarily through its aggregation into insoluble fibrils. The extended α-Syn half-life necessitates treatment durations that are incompatible with efficient high-throughput drug screening, can risk compound stability or cause cellular toxicity. To address this, we inserted a PEST sequence, a motif known to promote rapid protein degradation, at the C-terminus of the gene using CRISPR/Cas9 to create a novel cell line with reduced α-Syn half-life.

View Article and Find Full Text PDF

Dopamine replacement therapies for Parkinson's disease often produce dyskinesias with long-term use. Published studies suggest that introducing β-arrestin signaling might be protective for dyskinesia. We advanced known noncatecholamine D1/D5 receptor G protein-biased agonists and found that removal of oxygen in the linker from published compounds limited β-arrestin recruitment, whereas introduction of nitrogen on the central -phenyl linker favored β-arrestin recruitment and provided orally bioavailable compounds.

View Article and Find Full Text PDF

Background: Amyloid-β peptide (Aβ) species of 42 or 43 amino acids in length (Aβ42/43) trigger Alzheimer´s disease (AD) and are produced in abnormal amounts by mutants of the γ-secretase subunit presenilin-1 (PS1), which represent the primary cause of familial AD (FAD). Lowering these peptides by γ-secretase modulators (GSMs) is increasingly considered a safe strategy to treat AD since these compounds do not affect the overall cleavage of γ-secretase substrates. GSMs were shown to modulate not only wild-type (WT) γ-secretase but also FAD mutants, expanding their potential use also to the familial form of the disease.

View Article and Find Full Text PDF

For a long time metabotropic glutamate receptors (mGluRs) were thought to regulate neuronal functions as obligatory homodimers. Recent reports, however, indicate the existence of heterodimers between group-II and -III mGluRs in the brain, which differ from the homodimers in their signal transduction and sensitivity to negative allosteric modulators (NAMs). Whether the group-I mGluRs, mGlu1 and mGlu5, form functional heterodimers in the brain is still a matter of debate.

View Article and Find Full Text PDF
Article Synopsis
  • Fragile X syndrome (FXS) is a condition that causes problems with thinking and behavior, and it affects many people.
  • Scientists have been studying FXS to understand how it happens and how to develop new medicines to help.
  • So far, while some drug trials have been started, they haven't shown clear results, and researchers are trying to figure out better ways to create effective treatments for FXS and similar disorders.
View Article and Find Full Text PDF

Drugs targeting metabotropic glutamate receptor 5 (mGluR5) have therapeutic potential in autism spectrum disorders (ASD), including tuberous sclerosis complex (TSC). The question whether inhibition or potentiation of mGluR5 could be beneficial depends, among other factors, on the specific indication. To facilitate the development of mGluR5 treatment strategies, we tested the therapeutic utility of mGluR5 negative and positive allosteric modulators (an mGluR5 NAM and PAM) for TSC, using a mutant mouse model with neuronal loss of Tsc2 that demonstrates disease-related phenotypes, including behavioral symptoms of ASD and epilepsy.

View Article and Find Full Text PDF

Aim: The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics and pharmacodynamics, and maximum tolerated dose (MTD) of single ascending oral doses of RG7342, a positive allosteric modulator (PAM) of the metabotropic glutamate receptor 5 (mGlu5) for the treatment of schizophrenia, in healthy male subjects.

Methods: This was a single-centre, randomized, double-blind, adaptive study of 37 subjects receiving single ascending oral doses of RG7342 (ranging from 0.06-1.

View Article and Find Full Text PDF

Preclinical data suggest that inhibition of the metabotropic glutamate receptor 5 (mGluR5) receptor might hold therapeutic benefits in Fragile X syndrome (FXS). Treatment of Fmr1 knockout mice with mGluR5-negative allosteric modulators (NAMs) has been reported to correct a broad range of phenotypes related to FXS. The early short-term clinical trials with mGluR5 NAMs, including basimglurant, assessing the effects in individuals with FXS, were supportive of further exploration in larger, well-controlled trials.

View Article and Find Full Text PDF

Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress.

View Article and Find Full Text PDF

A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests that metabotropic glutamate receptor 5 (mGlu5) inhibitors have antidepressant-like properties.

View Article and Find Full Text PDF

Human chromosome 16p11.2 microdeletion is the most common gene copy number variation in autism, but the synaptic pathophysiology caused by this mutation is largely unknown. Using a mouse with the same genetic deficiency, we found that metabotropic glutamate receptor 5 (mGluR5)-dependent synaptic plasticity and protein synthesis was altered in the hippocampus and that hippocampus-dependent memory was impaired.

View Article and Find Full Text PDF

Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinson's disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common monogenic form of inherited mental retardation caused by a trinucleotid repeat expansion and transcriptional shutdown of the FMR1 gene. FXS patients present a complex and often severe neuropsychiatric phenotype yet have mild somatic symptoms, normal life expectancies, and no indications of neurodegeneration. The therapeutic potential of mGlu5 inhibitors was proposed in the 'mGluR theory of FXS' based on early insights into the molecular pathophysiology of FXS.

View Article and Find Full Text PDF

Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology.

View Article and Find Full Text PDF

The rising rates of autism spectrum disorder (ASD) and the lack of effective medications to treat its core symptoms have led to an increased sense of urgency to identify therapies for this group of neurodevelopmental conditions. Developing drugs for ASD, however, has been challenging because of a limited understanding of its pathophysiology, difficulties in modelling the disease in vitro and in vivo, the heterogeneity of symptoms, and the dearth of prior experience in clinical development. In the past few years these challenges have been mitigated by considerable advances in our understanding of forms of ASD caused by single-gene alterations, such as fragile X syndrome and tuberous sclerosis.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is the most common genetic cause for intellectual disability. Fmr1 knockout (KO) mice are an established model of FXS. Chronic pharmacological inhibition of metabotropic glutamate receptor 5 (mGlu5) in these mice corrects multiple molecular, physiological, and behavioral phenotypes related to patients' symptoms.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells.

View Article and Find Full Text PDF

Autism and autism spectrum disorders (ASDs) affect millions of individuals worldwide. Despite increased autism diagnoses over the past 30 years, therapeutic intervention is often 'trial and error'. This approach has identified some beneficial agents, but complex heterogeneous disorders require a more personalized treatment regimen.

View Article and Find Full Text PDF

Background: Previous studies have demonstrated a profound lack of habituation in 129P3 mice compared to the habituating, but initially more anxious, BALB/c mice. The present study investigated whether this non-adaptive phenotype of 129P3 mice is primarily based on anxiety-related characteristics.

Methods: To test this hypothesis and extend our knowledge on the behavioural profile of 129P3 mice, the effects of the anxiolyticdiazepam (1, 3 and 5 mg/kg) and the putative anxiolytic metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 3, 10 and 30 mg/kg) treatment on within-trial (intrasession) habituation, object recognition (diazepam: 1 mg/kg; MPEP 10 mg/kg) and on the central-nervous expression of the immediate early gene c-Fos (diazepam: 1 mg/kg; MPEP 10 mg/kg) were investigated.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, but a crucial unanswered question is whether pharmacological mGlu5 inhibition is able to reverse an already established FXS phenotype in mammals. Here we have used the novel, potent, and selective mGlu5 inhibitor CTEP to address this issue in the Fmr1 knockout mouse.

View Article and Find Full Text PDF

Accumulating evidence suggests that biogenic amine-based antidepressants act, at least in part, via regulation of brain-derived neurotrophic factor (BDNF) signaling. Biogenic amine-based antidepressants increase BDNF synthesis and activate its signaling pathway through TrkB receptors. Moreover, the antidepressant-like effects of these molecules are abolished in BDNF deficient mice.

View Article and Find Full Text PDF

The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors.

View Article and Find Full Text PDF