Publications by authors named "Linette Ruston"

Introduction: Sulforaphane (SFN) is a naturally occurring isothiocyanate associated with various health benefits, including reduced cancer risk, and has been extensively explored as a potential therapeutic. However, its inherent instability presents challenges in formulation, storage, and administration as a medicinal product. SFX-01 (Sulforadex) is a patented synthetic form of d,l-SFN stabilized within a biologically inert alpha-cyclodextrin complex.

View Article and Find Full Text PDF

Oxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN.

View Article and Find Full Text PDF

Long acting injectables (LAI) products are a popular intervention for treating a number of chronic conditions, with their long drug release reducing the administration frequency and thus improving patient adherence. The extended release, however, can provide a major challenge to bioequivalence (BE) testing since the long absorption half-life results in a long washout period, meaning that a traditional BE study can be many months or years in length. The unique PK profile for LAI products also means that it is critical to have appropriate metrics to summarise the plasma concentration profile.

View Article and Find Full Text PDF

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico.

View Article and Find Full Text PDF

JAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases.

View Article and Find Full Text PDF

Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1-3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology.

View Article and Find Full Text PDF

We report the discovery of a novel aminopyrazine series of PI3Kα inhibitors, designed by hybridizing two known scaffolds of PI3K inhibitors. We describe the progress achieved from the first compounds plagued with poor general kinase selectivity to compounds showing high selectivity for PI3Kα over PI3Kβ and excellent general kinase selectivity. This effort culminated with the identification of compound 5 displaying high potency and selectivity, and suitable physiochemical and pharmacokinetic properties for oral administration.

View Article and Find Full Text PDF

Starting from potent inhibitors of PI3Kα having poor general kinase selectivity (e.g., 1 and 2), optimisation of this series led to the identification of 25, a potent inhibitor of PI3Kα (wild type, E545K and H1047R mutations) and PI3Kδ, selective versus PI3Kβ and PI3Kγ, with excellent general kinase selectivity.

View Article and Find Full Text PDF

Starting from compound 1, a potent PI3Kα inhibitor having poor general kinase selectivity, we used structural data and modelling to identify key exploitable differences between PI3Kα and the other kinases. This approach led us to design chemical modifications of the central pyrazole, which solved the poor kinase selectivity seen as a strong liability for the initial compound 1. Amongst the modifications explored, a 1,3,4-triazole ring (as in compound 4) as a replacement of the initial pyrazole provided good potency against PI3Kα, with excellent kinase selectivity.

View Article and Find Full Text PDF

High throughput screening followed by a lead generation campaign uncovered a novel series of urea containing morpholinopyrimidine compounds which act as potent and selective dual inhibitors of mTORC1 and mTORC2. We describe the continued compound optimization campaign for this series, in particular focused on identifying compounds with improved cellular potency, improved aqueous solubility, and good stability in human hepatocyte incubations. Knowledge from empirical SAR investigations was combined with an understanding of the molecular interactions in the crystal lattice to improve both cellular potency and solubility, and the composite parameters of LLE and pIC50-pSolubility were used to assess compound quality and progress.

View Article and Find Full Text PDF
Article Synopsis
  • A comprehensive study on variations of a pyrrolopyrimidine inhibitor targeting ATP led to the identification of AZD5363 as a promising drug candidate.
  • AZD5363 exhibited enhanced effectiveness, lower affinity for the hERG channel, and greater selectivity towards AGC kinase ROCK compared to similar compounds.
  • In preclinical tests, AZD5363 demonstrated favorable drug metabolism and pharmacokinetics, effectively reducing Akt phosphorylation and inhibiting tumor growth in breast cancer models after oral administration.
View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the development of selective dual mTORC1 and mTORC2 inhibitors, focusing on enhancing cellular potency while improving solubility and safety profiles.
  • The initial results led to the identification of AZD8055 as a strong clinical candidate.
  • Further refinement aimed at decreasing metabolism rates in human liver cells resulted in another promising candidate, AZD2014.
View Article and Find Full Text PDF

The formation of ternary complexes of lanthanide-diethylenetriamine pentaacetic acid (DTPA)-bisamide complexes with different aromatic acids and their application in luminescent screening assays are presented. The europium complexes of DTPA-bisethylamide (BEA), DTPA-bisbutylamide (BUA), DTPA-bis(2-norbornyl) (NBA), and DTPA-bis(1-adamantyl) (ADA) have been isolated and the sensitization of emission upon 1:1 formation with aromatic acids has been studied by luminescence spectroscopy. The ternary complexes show stronger luminescence with picolinate (PCA) rather than phthalate (PTA) or benzoate (BZA), with the latter forming 1:2 complexes.

View Article and Find Full Text PDF

By identifying every pair of molecules that differ only by a particular, well-defined, structural transformation in a database of measured properties and computing the corresponding change in property, we obtain an overview of the effect that structural change has upon the property and set an expectation for what will happen when that transformation is applied elsewhere. The mean change indicates the expected magnitude of the change in the property and the number of cases in which the property increases give the probability that the structural transformation will cause the property to increase. Outliers indicate potential ways of avoiding the general trend.

View Article and Find Full Text PDF