Publications by authors named "Lindomar Jose Calumby Albuquerque"

In this study, sugarcane straw pretreatment liquor, the residual fraction from biomass pretreatment containing protic ionic liquid and lignin, was used for the immobilization of Eversa® Transform 2.0 lipase via alginate entrapment. In its wet form, liquor beads (BLw) achieved a high value of mechanical strength (7.

View Article and Find Full Text PDF

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block).

View Article and Find Full Text PDF

Protein corona formation and nanoparticles' aggregation have been heavily discussed over the past years since the lack of fine-mapping of these two combined effects has hindered the targeted delivery evolution and the personalized nanomedicine development. We present a multitechnique approach that combines dynamic light and small-angle X-ray scattering techniques with cryotransmission electron microscopy in a given fashion that efficiently distinguishes protein corona from aggregates formation. This methodology was tested using ∼25 nm model silica nanoparticles incubated with either model proteins or biologically relevant proteomes (such as fetal bovine serum and human plasma) in low and high ionic strength buffers to precisely tune particle-to-protein interactions.

View Article and Find Full Text PDF

Ciprofibrate (CIP) is a highly lipophilic and poorly water-soluble drug, typically used for dyslipidemia treatment. Although it is already commercialized in capsules, no previous studies report its solid-state structure; thus, information about the correlation with its physicochemical properties is lacking. In parallel, recent studies have led to the improvement of drug administration, including encapsulation in polymeric nanoparticles (NPs).

View Article and Find Full Text PDF