Publications by authors named "Lily Agranat-Tamir"

Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration.

View Article and Find Full Text PDF

In a genetically admixed population, admixed individuals possess genealogical and genetic ancestry from multiple source groups. Under a mechanistic model of admixture, we study the number of distinct ancestors from the source populations that the admixture represents. Combining a mechanistic admixture model with a recombination model that describes the probability that a genealogical ancestor is a genetic ancestor, for a member of a genetically admixed population, we count genetic ancestors from the source populations-those genealogical ancestors from the source populations who contribute to the genome of the modern admixed individual.

View Article and Find Full Text PDF

Members of genetically admixed populations possess ancestry from multiple source groups, and studies of human genetic admixture frequently estimate ancestry components corresponding to fractions of individual genomes that trace to specific ancestral populations. However, the same numerical ancestry fraction can represent a wide array of admixture scenarios within an individual's genealogy. Using a mechanistic model of admixture, we consider admixture genealogically: how many ancestors from the source populations does the admixture represent? We consider African-Americans, for whom continent-level estimates produce a 75-85% value for African ancestry on average and 15-25% for European ancestry.

View Article and Find Full Text PDF

Motivation: The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data.

Results: We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed genome-wide DNA from 73 individuals across five archaeological sites in the Southern Levant, revealing that they primarily descend from local Neolithic populations and groups from the Chalcolithic Zagros or Bronze Age Caucasus.
  • The study found that the genetic contribution from non-local populations increased over time, particularly noted in three individuals identified as descendants of recent migrants.
  • Modern Levantine populations show significant genetic ties to these ancient sources, indicating the importance of migrations in shaping their ancestry over the last 3,000 years.
View Article and Find Full Text PDF

Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans.

View Article and Find Full Text PDF

A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in cause defects in normal development but are not lethal as in human and mouse. Previous studies in indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent.

View Article and Find Full Text PDF

C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are central regulators of gene expression, and a large fraction of them are encoded in introns of RNA polymerase II transcripts. Thus, the biogenesis of intronic miRNAs by the microprocessor and the splicing of their host introns by the spliceosome require coordination between these processing events. This cross-talk is addressed here.

View Article and Find Full Text PDF

The serotonin receptor 2C (HTR2C) gene encodes a G protein-coupled receptor that is exclusively expressed in neurons. Here, we report that the 5' untranslated region of the receptor pre-mRNA as well as its hosted miRNAs is widely expressed in non-neuronal cell lines. Alternative splicing of HTR2C is regulated by MBII-52.

View Article and Find Full Text PDF