Publications by authors named "Lieve van Veggel"

Modulating the excitatory amino acid transporter 3 (EAAT3) can be considered a novel approach for the treatment of multiple sclerosis (MS). EAAT3 plays a crucial role in regulating oxidative stress and oligodendrocyte function through its ability to transport cysteine, the rate-limiting building block in the synthesis of the antioxidant glutathione. Therefore, EAAT3 activation is hypothesised to improve oligodendrocyte health and relieve its differentiation block in MS, improving remyelination capacity.

View Article and Find Full Text PDF

Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter.

View Article and Find Full Text PDF

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular.

View Article and Find Full Text PDF

In the progressive phase of multiple sclerosis (MS), the hampered differentiation capacity of oligodendrocyte precursor cells (OPCs) eventually results in remyelination failure. We have previously shown that DNA methylation of Id2/Id4 is highly involved in OPC differentiation and remyelination. In this study, we took an unbiased approach by determining genome-wide DNA methylation patterns within chronically demyelinated MS lesions and investigated how certain epigenetic signatures relate to OPC differentiation capacity.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes.

View Article and Find Full Text PDF