J Phys Condens Matter
October 2024
Rep Prog Phys
September 2024
Theare mimicked in a potential hybrid quantum system, involving two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave cavities. With the assistance of dichromatic classical optical drives featuring chiral designs, it can simulate two-mode LMG-type long-range spin-spin interactions with left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into two-mode spin-squeezed states but also simulate novel quantum critical phenomena and time crystal behaviors, among others.
View Article and Find Full Text PDFThe highest qubit Ardehali inequality violation with 203 standard deviations is first experimentally demonstrated using the hyper-entangled four-photon-eight-qubit Greenberger-Horne-Zeilinger (GHZ) state. Moreover, we experimentally investigate the robustness of the Ardehali inequality for the four-, six-, and eight-qubit GHZ states in a rotary noisy environment systematically. Our results first validate the Ardehali' theoretical statement of relation between violation of Ardehali inequality and particle number, and proved that Ardehali inequality is more robust against noise in larger number qubit GHZ states, and provided an experimental benchmark for us to estimate the safety of quantum channel in the noisy environment.
View Article and Find Full Text PDF