Publications by authors named "Laurence M Black"

Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of renal lymphatic networks, specifically lymphangiogenesis (LA), in the context of acute kidney injury caused by cisplatin.
  • The use of MAZ51, a selective VEGFR3 inhibitor, resulted in worse kidney damage, higher levels of inflammation, and increased cell death in a model of cisplatin nephrotoxicity compared to untreated controls.
  • Findings indicate that LA might protect against kidney damage during cisplatin treatment, suggesting that targeting LA could lead to new therapeutic strategies for acute kidney injury.
View Article and Find Full Text PDF

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies.

View Article and Find Full Text PDF

The presistent increase of 12/15 lipoxygenase enzyme activity is correlated with uncontrolled inflammation, leading to organ dysfunction. ML351, a potent 12/15 lipoxygenase (12/15LOX) inhibitor, was reported to reduce infarct size and inflammation in a murine ischemic stroke model. In the presented work, we have applied three complementary experimental approaches, in-vitro, ex-vivo, and in-vivo, to determine whether pharmacological inhibition of 12/15LOX could dampen the inflammatory response in adult mice after Kdo2-Lipid A (KLA) as an endotoxin stimulator or post myocardial infarction (MI).

View Article and Find Full Text PDF

Cellular metabolic rates in the kidney are critical for maintaining normal renal function. In a hypoxic milieu, cells rely on glycolysis to meet energy needs, resulting in the generation of pyruvate and NADH. In the absence of oxidative phosphorylation, the continuation of glycolysis is dependent on the regeneration of NAD from NADH accompanied by the fermentation of pyruvate to lactate.

View Article and Find Full Text PDF

Renal tissue injury initiates inflammatory and fibrotic processes that occur to promote regeneration and repair. After renal injury, damaged tissue releases cytokines and chemokines, which stimulate activation and infiltration of inflammatory cells to the kidney. Normal tissue repair processes occur simultaneously with activation of myofibroblasts, collagen deposition, and wound healing responses; however, prolonged activation of pro-inflammatory and pro-fibrotic cell types causes excess extracellular matrix deposition.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes with significant attributable morbidity and mortality. The disturbing trend of increasing incidence and prevalence of these clinical disorders highlights the urgent need for better understanding of the underlying mechanisms that are involved in pathogenesis of these conditions. Lymphangiogenesis and its involvement in various inflammatory conditions is increasingly recognized while its role in AKI and CKD remains to be fully elucidated.

View Article and Find Full Text PDF

Despite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to protection against lipopolysaccharide-induced endotoxemia and cecal ligation and puncture (CLP)-induced model of sepsis as evidenced by reduced cytokine levels, multi-organ dysfunction and mortality.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs.

View Article and Find Full Text PDF

Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs.

View Article and Find Full Text PDF

Post-myocardial infarction (MI), overactive inflammation is the hallmark of aging, however, the mechanism is unclear. We hypothesized that excess influx of omega 6 fatty acids may impair resolution, thus impacting the cardiosplenic and cardiorenal network post-MI. Young and aging mice were fed on standard lab chow (LC) and excess fatty acid (safflower oil; SO)-enriched diet for 2 months and were then subjected to MI surgery.

View Article and Find Full Text PDF