Publications by authors named "Lauren Dinh"

Renal artery aneurysms (RAAs) are rare and are frequently discovered incidentally during the workup for other renal issues. Open surgery has been a popular approach to managing RAAs; however, endovascular techniques have recently emerged as a less invasive option. Endovascular therapy involves stent angiography and coil embolization of the aneurysm.

View Article and Find Full Text PDF

Background: Cross-reactive carbohydrate determinant (CCD) structures found in plant and insect glycoproteins are commonly recognized by IgE antibodies as epitopes that can lead to extensive cross-reactivity and obscure in vitro diagnostic (IVD) serology results. With the introduction of component resolved diagnosis (CRD), recombinant non-glycosylated components have been utilized to mitigate the risk of CCD-specific IgE (sIgE) detection. However, a recent study has shown that CCD-sIgE may bind directly to the cellulose solid phase matrix used in certain in vitro diagnostic assays, eliminating the advantage of CRD over traditional extract-based testing.

View Article and Find Full Text PDF

Structural features of hydrogen thioperoxide (oxadisulfane, H-S-O-H) and of alkanesulfenic acids (R-S-O-H; R = CH3, CH2CH3, CH2CH2CH3, CH(CH3)2, C(CH3)3, CF3, CCl3) and the mechanisms of their dehydrative cyclocondensation to the respective sulfinothioic acid (H-(S═O)-S-H) and alkyl alkanethiosulfinates (R-(S═O)-S-R) have been studied using coupled cluster theory with single and double and perturbative triple excitations [CCSD(T)] and quadratic configuration interaction with single and double and perturbative triple excitations [QCISD(T)] with the cc-pVDZ basis set and also using second-order Møller-Plesset perturbation theory (MP2) and the hybrid density functionals B3LYP, B3PW91, and PBE1PBE with the 6-311+G(d,p) basis set. The concerted cyclodehydration mechanisms include cyclic five-center transition states with relatively long distance sulfur-sulfur bonding interactions. Attractive and repulsive nonbonding interactions are predicted in the sulfenic acids, transition states, and thiosulfinates.

View Article and Find Full Text PDF