Spatial metabolomics is transforming our understanding of microbial systems by uncovering the localized molecular dynamics within complex microbial communities. By using advanced mass spectrometry imaging techniques, researchers can now visualize metabolites at the micron scale and show how microbes interact, form biofilms, and influence their environments at unprecedented levels of detail. These approaches not only provide molecular insights they also highlight the need of integrating activity measurements and temporal analyses to capture the dynamic nature of microbial assemblages.
View Article and Find Full Text PDFThe global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral Leptastrea purpura.
View Article and Find Full Text PDFMelanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form.
View Article and Find Full Text PDF(eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by species (10 strains), from the leaf and the root rhizosphere of Baltic .
View Article and Find Full Text PDF