Mutat Res Rev Mutat Res
September 2025
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFAnthropogenic aerosols are an important driver of historical climate change but the climate response is not fully understood and the climate model simulations suffer large uncertainties. On the basis of a multimodel ensemble of historical aerosol forcing simulation for a period of global aerosol increase during 1965 to 1989, here, we show that the precipitation response shares a common southward displacement of tropical rain bands but the magnitude differs markedly among models, accounting for 76% of the intermodel uncertainty in zonal-mean precipitation change. Our analysis of atmospheric energetics further reveals key mechanisms for magnitude uncertainty: aerosol radiative forcing drives, cloud radiative feedback amplifies, and ocean circulation damps the intermodel uncertainty in cross-equatorial atmospheric energy transport change and the meridional shift of tropical rain bands.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Using e^{+}e^{-} collision data collected with the BESIII detector operating at the Beijing electron positron collider, the cross section of e^{+}e^{-}→π^{+}π^{-}h_{c} is measured at 59 points with center-of-mass energy sqrt[s] ranging from 4.009 to 4.950 GeV with a total integrated luminosity of 22.
View Article and Find Full Text PDFBioinformatics
September 2025
Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials towards FDA approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.
View Article and Find Full Text PDF: The objective of this study is to develop a straightforward and expeditious clinical detection method for meropenem. This study aims to introduce an innovative nanoenzyme design, thereby broadening the application of platinum nanomaterials in biological detection. It seeks to facilitate the portable detection of meropenem using commercial software.
View Article and Find Full Text PDF