Publications by authors named "Kylie Yeung"

Diffusion-weighted imaging (DWI) is a key contrast mechanism in MRI which allows for the assessment of microstructural properties of brain tissues by measuring the displacement of water molecules. Several diffusion models, including the tensor (DTI), kurtosis (DKI), and neurite orientation dispersion and density imaging (NODDI), are commonly used in both research and clinical practice. However, there is currently no standardized method for validating the stability and repeatability of these models over time.

View Article and Find Full Text PDF

Purpose: The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity.

Theory And Methods: Simulations were run to assess performance of the VFA B mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain.

View Article and Find Full Text PDF

Significance: Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation.

Aim: We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.

View Article and Find Full Text PDF

Optical-resolution photoacoustic microscopy (OR-PAM) has been widely used for imaging blood vessel and oxygen saturation of hemoglobin (sO), providing high-resolution functional images of living animals . However, most of them require one or multiple bulky and costly pulsed lasers, hindering their applicability in preclinical and clinical settings. In this paper, we demonstrate a reflection-mode low-cost high-resolution OR-PAM system by using two cost-effective and compact laser diodes (LDs), achieving microvasculature and sO imaging with a high lateral resolution of ∼6 µm.

View Article and Find Full Text PDF