Publications by authors named "Kumar Selvarajoo"

Cancer cell populations, such as chronic lymphocytic leukemia (CLL), are characterized by aberrant proliferation and plasticity: cells may switch between states so increasing population heterogeneity. Previous works have shown that gene expression noise can impact cell-state transition. To gain better insights into transcriptome-wide expression dynamics and the effect of noise on state transition, here we investigate RNA-Seq data of proliferative (PC) and non-proliferative (NPC) CLL cells.

View Article and Find Full Text PDF

Chitin is a major component of various wastes such as crustacean shells, filamentous fungi, and insects. Recently, food-safe biological and chemical processes converting chitin to glucosamine have been developed. Here, we studied microalgae that can uptake glucosamine as vital carbon and nitrogen sources for valuable alternative protein biomass.

View Article and Find Full Text PDF

Background: The transition from explanative modeling of fitted data to the predictive modeling of unseen data for systems biology endeavors necessitates the effective recovery of reaction parameters. Yet, the relative efficacy of optimization algorithms in doing so remains under-studied, as to the specific reaction kinetics and the effect of measurement noises. To this end, we simulate the reactions of an artificial pathway using 4 kinetic formulations: generalized mass action (GMA), Michaelis-Menten, linear-logarithmic, and convenience kinetics.

View Article and Find Full Text PDF

Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655.

View Article and Find Full Text PDF
Article Synopsis
  • Lifespan extension is traditionally used to evaluate aging interventions, but this method has limitations, particularly when control group lifespans are short, leading to overstated effectiveness.
  • Statistical issues and the rarity of independent replications in mouse studies can skew results, making it hard to trust findings from a single study.
  • The authors suggest using a "900-day rule," which indicates that for an intervention to be credible, control lifespans should be around 900 days, and treated groups should significantly surpass this, to help identify promising longevity treatments.
View Article and Find Full Text PDF

The inherent heterogeneity of cancer contributes to highly variable responses to any anticancer treatments. This underscores the need to first identify precise biomarkers through complex multi-omics datasets that are now available. Although much research has focused on this aspect, identifying biomarkers associated with distinct drug responders still remains a major challenge.

View Article and Find Full Text PDF

Across many scientific disciplines, the development of computational models and algorithms for generating artificial or synthetic data is gaining momentum. In biology, there is a great opportunity to explore this further as more and more big data at multi-omics level are generated recently. In this opinion, we discuss the latest trends in biological applications based on process-driven and data-driven aspects.

View Article and Find Full Text PDF

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes.

View Article and Find Full Text PDF

With the continuous increment in global population growth, compounded by post-pandemic food security challenges due to labor shortages, effects of climate change, political conflicts, limited land for agriculture, and carbon emissions control, addressing food production in a sustainable manner for future generations is critical. Microorganisms are potential alternative food sources that can help close the gap in food production. For the development of more efficient and yield-enhancing products, it is necessary to have a better understanding on the underlying regulatory molecular pathways of microbial growth.

View Article and Find Full Text PDF

Living cells display dynamic and complex behaviors. To understand their response and to infer novel insights not possible with traditional reductionist approaches, over the last few decades various computational modelling methodologies have been developed. In this chapter, we focus on modelling the dynamic metabolic response, using linear and nonlinear ordinary differential equations, of an engineered Escherichia coli MG1655 strain with plasmid pJBEI-6409 that produces limonene.

View Article and Find Full Text PDF

For many years, there has been general interest in developing virtual cells or digital twin models [...

View Article and Find Full Text PDF

Cancer is widely considered a genetic disease. Notably, recent works have highlighted that every human gene may possibly be associated with cancer. Thus, the distinction between genes that drive oncogenesis and those that are associated to the disease, but do not play a role, requires attention.

View Article and Find Full Text PDF

Food security has become a pressing issue in the modern world. The ever-increasing world population, ongoing COVID-19 pandemic, and political conflicts together with climate change issues make the problem very challenging. Therefore, fundamental changes to the current food system and new sources of alternative food are required.

View Article and Find Full Text PDF

Gene expression profiling techniques, such as DNA microarray and RNA-Sequencing, have provided significant impact on our understanding of biological systems. They contribute to almost all aspects of biomedical research, including studying developmental biology, host-parasite relationships, disease progression and drug effects. However, the high-throughput data generations present challenges for many wet experimentalists to analyze and take full advantage of such rich and complex data.

View Article and Find Full Text PDF

Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow.

View Article and Find Full Text PDF

Research in synthetic biology and metabolic engineering require a deep understanding on the function and regulation of complex pathway genes. This can be achieved through gene expression profiling which quantifies the transcriptome-wide expression under any condition, such as a cell development stage, mutant, disease, or treatment with a drug. The expression profiling is usually done using high-throughput techniques such as RNA sequencing (RNA-Seq) or microarray.

View Article and Find Full Text PDF

In recent years, artificial intelligence (AI)/machine learning has emerged as a plausible alternative to systems biology for the elucidation of biological phenomena and in attaining specified design objective in synthetic biology. Although considered highly disruptive with numerous notable successes so far, we seek to bring attention to both the fundamental and practical pitfalls of their usage, especially in illuminating emergent behaviors from chaotic or stochastic systems in biology. Without deliberating on their suitability and the required data qualities and pre-processing approaches beforehand, the research and development community could experience similar 'AI winters' that had plagued other fields.

View Article and Find Full Text PDF

The majority of human genome are non-coding genes. Recent research have revealed that about half of these genome sequences make up of transposable elements (TEs). A branch of these belong to the endogenous retroviruses (ERVs), which are germline viral infection that occurred over millions of years ago.

View Article and Find Full Text PDF

The study of gene expression variability, especially for cancer and cell differentiation studies, has become important. Here, we investigate transcriptome-wide scatter of 23 cell types and conditions across different levels of biological complexity. We focused on genes that act like toggle switches between pairwise replicates of the same cell type, i.

View Article and Find Full Text PDF

Metabolic engineering aims to maximize the production of bio-economically important substances (compounds, enzymes, or other proteins) through the optimization of the genetics, cellular processes and growth conditions of microorganisms. This requires detailed understanding of underlying metabolic pathways involved in the production of the targeted substances, and how the cellular processes or growth conditions are regulated by the engineering. To achieve this goal, a large system of experimental techniques, compound libraries, computational methods and data resources, including multi-omics data, are used.

View Article and Find Full Text PDF

Differential expressed (DE) genes analysis is valuable for understanding comparative transcriptomics between cells, conditions or time evolution. However, the predominant way of identifying DE genes is to use arbitrary threshold fold or expression changes as cutoff. Here, we developed a more objective method, Scatter Overlay or ScatLay, to extract and graphically visualize DE genes across any two samples by utilizing their pair-wise scatter or transcriptome-wide noise, while factoring replicate variabilities.

View Article and Find Full Text PDF

For any dynamical system, like living organisms, an attractor state is a set of variables or mechanisms that converge towards a stable system behavior despite a wide variety of initial conditions. Here, using multi-dimensional statistics, we investigate the global gene expression attractor mechanisms shaping anaerobic to aerobic state transition (AAT) of Escherichia coli in a bioreactor at early times. Out of 3,389 RNA-Seq expression changes over time, we identified 100 sharply changing genes that are key for guiding 1700 genes into the AAT attractor basin.

View Article and Find Full Text PDF

Objective: Living cells display complex and non-linear behaviors, especially when posed to environmental threats. Here, to understand the self-organizing cooperative behavior of a microorganism Pseudomonas aeruginosa, we developed a discrete spatiotemporal cellular automata model based on simple physical rules, similar to Conway's game of life.

Results: The time evolution model simulations were experimentally verified for P.

View Article and Find Full Text PDF

Here we report a bio-statistical/informatics tool, ABioTrans, developed in R for gene expression analysis. The tool allows the user to directly read RNA-Seq data files deposited in the Gene Expression Omnibus or GEO database. Operated using any web browser application, ABioTrans provides easy options for multiple statistical distribution fitting, Pearson and Spearman rank correlations, PCA, -means and hierarchical clustering, differential expression (DE) analysis, Shannon entropy and noise (square of coefficient of variation) analyses, as well as Gene ontology classifications.

View Article and Find Full Text PDF