The extracellular matrix remains under-recognized as a sex-dependent entity. Designing culture environments that account for sex as a biological variable requires considering not only cellular sex, but also the usage of sex-specific scaffolds to create a holistically sex-accurate platform.
View Article and Find Full Text PDFThe extracellular matrix (ECM) of the aortic valve plays a pivotal role in maintaining valve function and becomes profoundly altered during the progression of calcific stenosis of the native aortic valve (CAS). CAS involves fibrocalcific ECM remodeling characterized by increased proteoglycans and glycosaminoglycans, enhanced collagen deposition, and fragmentation of elastic fibers, all of which contribute to valve thickening, fibrosis, and calcification. In this brief review, we provide an overview of these ECM changes and discuss the relationship between aberrant ECM remodeling and other pathological features of CAS - namely, differentiation of the resident valve cell types, inflammatory activity, lipid deposition, and relative hypoxia.
View Article and Find Full Text PDFThe extracellular matrix (ECM) plays a crucial role in tumor progression. Here, we analyzed collagen I and cellular fibronectin (cFN) in normal omentum and metastatic omentum from high-grade serous ovarian cancer HGSOC). The levels of both proteins were significantly elevated and collagen I fibers were significantly thicker in HGSOC metastases.
View Article and Find Full Text PDFCollagen type I, a key structural component of the extracellular matrix (ECM), is frequently altered in cancer, with altered fiber organization at the primary tumor site linked to metastasis and poor patient outcomes. Here, we demonstrate that collagen fibers are also altered in metastatic sites such as the omentum of patients with high-grade serous ovarian cancer (HGSOC). Specifically, we observed a significant increase in fiber density, alignment, and width.
View Article and Find Full Text PDFHypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown.
View Article and Find Full Text PDFCollective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.
View Article and Find Full Text PDFFibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes.
View Article and Find Full Text PDFMales acquire calcific aortic valve disease (CAVD) twice as often as females, yet stenotic valves from females display significantly higher levels of fibrosis compared to males with similar extent of disease. Fibrosis occurs as an imbalance between the production and degradation of the extracellular matrix (ECM), specifically type I collagen. This work characterizes ECM production and remodeling by male and female valvular interstitial cells (VICs) to better understand the fibrocalcific divergence between sexes evident in CAVD.
View Article and Find Full Text PDFMultiplexed immunofluorescent (IF) techniques enable the detection of multiple antigens within the same sample and are therefore useful in situations where samples are rare or small in size. Similar to standard IF, multiplexed IF yields information on both the location and relative amount of detected antigens. While this method has been used primarily to detail cell phenotypes, we have recently adapted it to profile the extracellular matrix (ECM), which provides technical challenges due to autofluorescence and spatial overlap.
View Article and Find Full Text PDFJ Histochem Cytochem
February 2022
Recent evidence supports the fimbriae of the fallopian tube as one origin site for high-grade serous ovarian cancer (HGSOC). The progression of many solid tumors is accompanied by changes in the microenvironment, including alterations of the extracellular matrix (ECM). Therefore, we sought to determine the ECM composition of the benign fallopian tube and changes associated with serous tubal intraepithelial carcinomas (STICs), precursors of HGSOC.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2021
Angiogenesis is a hallmark of fibrocalcific aortic valve disease (CAVD). An imbalance of pro- and anti-angiogenic factors is thought to play a role in driving this disease process, and valvular interstitial cells (VICs) may act as a significant source of these factors. CAVD is also known to exhibit sexual dimorphism in its presentation, and previous work suggested that VICs may exhibit cellular-scale sex differences in the context of angiogenesis.
View Article and Find Full Text PDFJ Mol Cell Cardiol
December 2021
For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease.
View Article and Find Full Text PDFOur nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.
View Article and Find Full Text PDFCollagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges.
View Article and Find Full Text PDFClinical evidence supports a role for the extracellular matrix (ECM) in cancer risk and prognosis across multiple tumor types, and numerous studies have demonstrated that individual ECM components impact key hallmarks of tumor progression (e.g., proliferation, migration, angiogenesis).
View Article and Find Full Text PDFACS Biomater Sci Eng
May 2020
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases.
View Article and Find Full Text PDFHuman head and neck cancers that develop from the squamous cells of the oropharynx (Oropharyngeal Squamous Cell Carcinomas or OPSCC) are commonly associated with the papillomavirus infection. A papillomavirus infection-based mouse model of oropharyngeal tumorigenesis would be valuable for studying the development and treatment of these tumors. We have developed an efficient system using the mouse papillomavirus (MmuPV1) to generate dysplastic oropharyngeal lesions, including tumors, in the soft palate and the base of the tongue of two immune-deficient strains of mice.
View Article and Find Full Text PDFRe-epithelialization is a critical step in wound healing and results from the collective migration of keratinocytes. Previous work demonstrated that immobilized, but not soluble, epidermal growth factor (EGF) resulted in leader cell-specific activation of phospholipase C gamma 1 (PLCγ1) in HaCaT keratinocytes, and that this PLCγ1 activation was necessary to drive persistent cell migration. To determine the mechanism responsible for wound edge-localized PLCγ1 activation, we examined differences in cell area, cell-cell interactions, and EGF receptor (EGFR) localization between wound edge and bulk cells treated with vehicle, soluble EGF, or immobilized EGF.
View Article and Find Full Text PDFClinically, increased breast tumor stiffness is associated with metastasis and poorer outcomes. Yet, in vitro studies of tumor cells in 3D scaffolds have found decreased invasion in stiffer environments. To resolve this apparent contradiction, MDA-MB-231 breast tumor spheroids were embedded in 'low' (2 kPa) and 'high' (12 kPa) stiffness 3D hydrogels comprised of methacrylated gelatin/collagen I, a material that allows for physiologically-relevant changes in stiffness while matrix density is held constant.
View Article and Find Full Text PDFIn their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell-cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
An insufficient understanding of calcific aortic valve disease (CAVD) pathogenesis remains a major obstacle in developing treatment strategies for this disease. The aim of the present study was to create engineered environments that mimic the earliest known features of CAVD and apply this in vitro platform to decipher relationships relevant to early valve lesion pathobiology. Glycosaminoglycan (GAG) enrichment is a dominant hallmark of early CAVD, but culture of valvular interstitial cells (VICs) in biomaterial environments containing pathological amounts of hyaluronic acid (HA) or chondroitin sulfate (CS) did not directly increase indicators of disease progression such as VIC activation or inflammatory cytokine production.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2017
Calcific aortic valve disease is a common cause of aortic stenosis, a life threatening condition. In this study, a mathematical model is developed to simulate the cascade of mechanosensitive biochemical events that occur upon damage to the endothelial layer, leading to calcification. The model contains two phases.
View Article and Find Full Text PDFPLoS Comput Biol
September 2017
The extracellular microenvironment provides critical cues that guide tissue development, homeostasis, and pathology. Deciphering the individual roles of these cues in tissue function necessitates the development of physically tunable culture platforms, but current approaches to create such materials have produced scaffolds that either exhibit a limited mechanical range or are unable to recapitulate the fibrous nature of in vivo tissues. Here we report a novel interpenetrating network (IPN) of gelatin-methacrylate (gelMA) and collagen I that enables independent tuning of fiber density and scaffold stiffness across a physiologically-relevant range of shear moduli (2-12 kPa), while maintaining constant extracellular matrix content.
View Article and Find Full Text PDF