Publications by authors named "Kirk D C Jensen"

Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, , is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core.

View Article and Find Full Text PDF

Unlabelled: Unlike in infection and cancer, T cell exhaustion in autoimmune disease has not been clearly defined. Here we set out to understand inhibitory protein (PD-1, Tim3, CTLA4, Lag3) expression in CXCR5- and CXCR5+ CD8 and CD4 T cells in systemic lupus erythematosus. CXCR5+ CD8 and CD4 T cells express PD-1 and engage B cells in germinal center reactions, leading to autoantibody formation in autoimmunity.

View Article and Find Full Text PDF

Introduction: induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses differs widely between clonal lineage strains of , in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR).

View Article and Find Full Text PDF

Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection.

View Article and Find Full Text PDF

Protective immunity to parasitic infections has been difficult to elicit by vaccines. Among parasites that evade vaccine-induced immunity is Toxoplasma gondii, which causes lethal secondary infections in chronically infected mice. Here we report that unlike susceptible C57BL/6J mice, A/J mice were highly resistant to secondary infection.

View Article and Find Full Text PDF

IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days.

View Article and Find Full Text PDF

Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057.

View Article and Find Full Text PDF

Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the "hygiene hypothesis" suggests that reduced microbial exposures during life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a "perfect storm" of many contributing factors, we argue here that two important considerations have rarely been explored.

View Article and Find Full Text PDF

T cell exhaustion is a state of hyporesponsiveness that develops during many chronic infections and cancer. Neutralization of inhibitory receptors, or "checkpoint blockade," can reverse T cell exhaustion and lead to beneficial prognoses in experimental and clinical settings. Whether checkpoint blockade can resolve lethal acute infections is less understood but may be beneficial in vaccination protocols that fail to elicit sterilizing immunity.

View Article and Find Full Text PDF

For parasites that sequester themselves within a vacuole, new rules governing antigen presentation are coming into focus. Components of the host's autophagy machinery and the parasite's membranous nanotubular network within the parasitophorous vacuole play a major role in determining antigenicity of Toxoplasma proteins. As such, both parasite and vaccinologist may exploit these pathways to regulate the ever important CD8 T cell response to apicomplexan parasites.

View Article and Find Full Text PDF

Unlabelled: The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T.

View Article and Find Full Text PDF

Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal.

View Article and Find Full Text PDF

The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterise the biological function of the components of the rhoptries.

View Article and Find Full Text PDF

Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo.

View Article and Find Full Text PDF

Background: Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown.

View Article and Find Full Text PDF

Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this, it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the immune response of the host, and in some cases provokes it, through the use of specific parasite effector proteins.

View Article and Find Full Text PDF

European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major goal of current research. Here we show that type I and III infected macrophages, a cell type required for host immunity to Toxoplasma, are alternatively activated, while type II infected macrophages are classically activated.

View Article and Find Full Text PDF

NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown.

View Article and Find Full Text PDF

The T cell receptor (TCR) and associated CD3gammaepsilon, deltaepsilon, and zetazeta signaling dimers allow T cells to discriminate between different antigens and respond accordingly, but our knowledge of how these parts fit and work together is incomplete. In this study, we provide additional evidence that the CD3 heterodimers congregate on one side of the TCR in both the alphabeta and gammadeltaTCR-CD3 complexes. We also report that the other side of the alphabetaTCR mediates homotypic alphabetaTCR interactions and signaling.

View Article and Find Full Text PDF

gammadelta Tau cells, together with alphabeta Tau cells, are abundantly present in the epithelial layer of the small intestine (IEL) and are essential for the host's first line of defense. Whether or not gammadelta IELs, like alphabeta IELs, are derived from thymocytes that encounter self-Ags in the thymus is unclear. In this study, we report that a natural population of gammadelta T cells that are specific for the nonclassical MHC class I molecules T10 and T22 are present in the IEL compartment of mice that do not express T10/T22.

View Article and Find Full Text PDF

gammadelta T cells contribute uniquely to host immune defense, but how they do so remains unclear. Recent work suggests that thymic selection does little to constrain gammadelta T cell antigen specificities, but instead determines their effector fate. When triggered through the T cell receptor, ligand-experienced cells make IFNgamma, whereas ligand-naïve gammadelta T cells produce IL-17, a major initiator of inflammation.

View Article and Find Full Text PDF

Following Leishmania major infection, the early LACK (Leishmania homolog of receptors for activated C kinase)-induced IL-4 response appears to determine disease susceptibility in BALB/c mice. Therefore, we sought to manipulate the pathogenic T cell responses to the immunodominant epitope with the use of altered peptide ligands (APLs). Conservative and non-conservative substitutions for each amino acid of the LACK 161-175 peptide determinant were tested for their stimulatory capacity in four different LACK-reactive T cell systems.

View Article and Find Full Text PDF

gammadelta T cells uniquely contribute to host immune defense, but how this is accomplished remains unclear. Here, we analyzed the nonclassical major histocompatibility complex class I T10 and T22-specific gammadelta T cells in mice and found that encountering antigen in the thymus was neither required nor inhibitory for their development. But when triggered through the T cell receptor, ligand-naive lymphoid-gammadelta T cells produced IL-17, whereas ligand-experienced cells made IFN-gamma.

View Article and Find Full Text PDF