N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood.
View Article and Find Full Text PDFBlockade of N-methyl-D-aspartate receptors (NMDAR) is known to augment cortical serotonin 2A receptors (5-HT2ARs), which is implicated in psychosis. However, the pathways from NMDAR hypofunction to 5-HT2AR up-regulation are unclear. Here we addressed in mice whether genetic deletion of the indispensable NMDAR-subunit Grin1 principally in corticolimbic parvalbumin-positive fast-spiking interneurons, could up-regulate 5-HT2ARs leading to cortical hyper-excitability.
View Article and Find Full Text PDFNeuropharmacology
December 2021
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792.
View Article and Find Full Text PDFCortical gamma oscillations are believed to be involved in mental processes which are disturbed in schizophrenia. For example, the magnitudes of sensory-evoked oscillations, as measured by auditory steady-state responses (ASSRs) at 40 Hz, are robustly diminished, whereas the baseline gamma power is enhanced in schizophrenia. Such dual gamma oscillation abnormalities are also present in a mouse model of N-methyl-D-aspartate receptor hypofunction (Ppp1r2cre/Grin1 knockout mice).
View Article and Find Full Text PDFHIV-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain, ultimately leading to progressive decline of cognitive abilities and memory. Chemokine CC motif ligand 2 (CCL2) is elevated in cerebrospinal fluid (CSF), and has been believed to contribute to HAND. Previous studies by our research team have shown that CCL2 enhances N-Methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) and causes nerve cell damage.
View Article and Find Full Text PDFN-methyl-d-aspartate (NMDA) receptor (NMDAR) hypofunction plays a key role in pathophysiology of schizophrenia. Since NMDAR hypofunction has also been reported in autism, Alzheimer's disease and cognitive dementia, it is crucial to identify the location, timing, and mechanism of NMDAR hypofunction for schizophrenia for better understanding of disease etiology and for novel therapeutic intervention. In this review, we first discuss the shared underlying mechanisms of NMDAR hypofunction in NMDAR antagonist models and the anti-NMDAR autoantibody model of schizophrenia and suggest that NMDAR hypofunction could occur in GABAergic neurons in both models.
View Article and Find Full Text PDFThe N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel activated by L-glutamate and glycine, plays a major role in the synaptic plasticity underlying learning and memory. NMDARs are involved in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and NMDAR hypofunction is implicated in schizophrenia. Herein we describe structure-activity relationship (SAR) studies on 2-naphthoic acid derivatives to investigate structural requirements for positive and negative allosteric modulation of NMDARs.
View Article and Find Full Text PDFBiochem Pharmacol
January 2019
N-methyl-d-aspartate receptors (NMDARs) have multiple prominent roles in CNS function but their excessive or insufficient activity contributes to neuropathological/psychiatric disorders. Consequently, a variety of positive and negative allosteric modulators (PAMs and NAMs, respectively) have recently been developed. Although these modulators bind to extracellular domains, in the present report we find that the NMDAR's intracellular C-terminal domains (CTDs) significantly influence PAM/NAM activity.
View Article and Find Full Text PDFExcitatory activity in the CNS is predominately mediated by l-glutamate through several families of l-glutamate neurotransmitter receptors. Of these, the N-methyl-d-aspartate receptor (NMDAR) family has many critical roles in CNS function and in various neuropathological and psychiatric conditions. Until recently, the types of compounds available to regulate NMDAR function have been quite limited in terms of mechanism of action, subtype selectivity, and biological effect.
View Article and Find Full Text PDFNMDA receptors (NMDARs) contribute to several neuropathological processes. Novel positive allosteric modulators (PAMs) of NMDARs have recently been identified but their effects on NMDAR gating remain largely unknown. To this end, we tested the effect of a newly developed molecule UBP684 on GluN1/GluN2A receptors.
View Article and Find Full Text PDFThe theory that N-methyl-d-aspartate receptor (NMDAR) hypofunction is responsible for the symptoms of schizophrenia is well supported by many pharmacological and genetic studies. Accordingly, positive allosteric modulators (PAMs) that augment NMDAR signaling may be useful for treating schizophrenia. Previously we have identified several NMDAR PAMs containing a carboxylic acid attached to naphthalene, phenanthrene, or coumarin ring systems.
View Article and Find Full Text PDFThe dissociative anesthetic ketamine elicits symptoms of schizophrenia at subanesthetic doses by blocking N-methyl-d-aspartate receptors (NMDARs). This property led to a variety of studies resulting in the now well-supported theory that hypofunction of NMDARs is responsible for many of the symptoms of schizophrenia. However, the roles played by specific NMDAR subunits in different symptom components are unknown.
View Article and Find Full Text PDFAirway hyperresponsiveness is an essential part of the definition of asthma associated temporally with exposure to allergens, certain respiratory viruses, pollutants such as ozone, and certain organic chemicals. Interleukin-13 (IL-13) is implicated as a central regulator in immunoglobulin E (IgE) synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. The importance of IL-13 in allergic disorders in humans is supported by consistent associations between tissue IL-13 levels and genetic variants in the IL-13 gene and asthma and related traits.
View Article and Find Full Text PDFBioorg Med Chem
April 2011
In order to develop potent skin whitening agents, we have synthesized 17 hydroxyphenyl benzyl ether compounds and tested their melanin synthesis inhibitory activity, DPPH free radical scavenging activity and tyrosinase inhibitory activity. Compounds 32, 35 and 36 possessing 4-hydroxyphenyl benzyl ether structure showed excellent inhibitory capacity with almost 50-fold than arbutin used as a reference in the inhibition test of α-MSH stimulated melanin synthesis in B-16 cells. 4-Hydroxyphenyl benzyl ether compounds also showed good antioxidant activity in the DPPH free radical scavenging test.
View Article and Find Full Text PDFImportance To The Field: Omalizumab is of proven efficacy in the treatment of severe allergic bronchial asthma and works through inhibiting the activity of IgE and the allergic immune mechanism IgE mediates. It has been demonstrated to be efficacious in children with asthma but is not approved by the FDA for use in children below 12 years of age.
Areas Covered In This Review: Omalizumab is a 95% humanized monoclonal antibody that binds to circulating IgE at the same site on the Fc domain as the high-affinity IgE receptor, FcϵRI.