Publications by authors named "Kevin J Kramer"

Influenza virus is a highly contagious respiratory pathogen causing between 9.4 and 41 million infections per year in the United States in the last decade. Annual vaccination is recommended by the World Health Organization, with the goal to reduce influenza severity and transmission.

View Article and Find Full Text PDF
Article Synopsis
  • - The research focuses on developing pan-coronavirus interventions by identifying 50 antibodies from human B cells, particularly highlighting the antibody 54043-5, which binds to a common part of spike proteins in various coronaviruses.
  • - A structural analysis revealed that 54043-5 recognizes a specific, highly conserved region of the S2 subunit in SARS-CoV-2, which is critical for understanding how this antibody can potentially provide protection.
  • - Although 54043-5 does not neutralize the virus directly, it activates immune responses that help combat infections, and certain modifications to this antibody showed protective effects in mouse models of SARS-CoV-2 disease.
View Article and Find Full Text PDF

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells.

View Article and Find Full Text PDF

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins.

View Article and Find Full Text PDF

RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants.

View Article and Find Full Text PDF

The protective human antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) focuses on the spike (S) protein, which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope ("supersite") on the N-terminal domain (NTD). Using the single B cell technology called linking B cell receptor to antigen specificity through sequencing (LIBRA-Seq), we isolated a large panel of NTD-reactive and SARS-CoV-2-neutralizing antibodies from an individual who had recovered from COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • Several monoclonal antibodies have been approved to treat COVID-19, but their development is often slow due to the need to test many candidates.
  • A new method combines target-ligand blocking and a B cell receptor-sequencing approach called LIBRA-seq, which helps quickly identify effective neutralizing antibodies.
  • This innovative combination could significantly speed up and enhance the discovery process for new antibodies that fight against SARS-CoV-2.
View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of coronavirus disease (COVID-19). Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclonal antibodies to SARS-CoV-2 is of utmost importance. Here, we report a panel of SARS-CoV-2 antibodies isolated using the linking B cell receptor to antigen specificity through sequencing (LIBRA-seq) technology from an individual who recovered from COVID-19.

View Article and Find Full Text PDF

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied.

View Article and Find Full Text PDF

Unlabelled: RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 therapeutic antibody discovery has achieved success but is often inefficient, needing many candidates to find just a few viable options.
  • The study demonstrates that adding antibody-ligand blocking to the LIBRA-seq platform enhances the efficient identification of powerful neutralizing antibodies against SARS-CoV-2.
  • LIBRA-seq with ligand blocking is a versatile method for discovering functional antibodies that target the interruption of antigen-ligand interactions.
View Article and Find Full Text PDF

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit.

View Article and Find Full Text PDF

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients.

Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry.

View Article and Find Full Text PDF

The continual emergence of novel coronavirus (CoV) strains, like SARS-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. Coronavirus spike (S) proteins share common structural motifs that could be vulnerable to cross-reactive antibody responses. To study this phenomenon in human coronavirus infection, we applied a high-throughput sequencing method called LIBRA-seq (Linking B cell receptor to antigen specificity through sequencing) to a SARS-CoV-1 convalescent donor sample.

View Article and Find Full Text PDF

B cell receptor (BCR) sequencing is a powerful tool for interrogating immune responses to infection and vaccination, but it provides limited information about the antigen specificity of the sequenced BCRs. Here, we present LIBRA-seq (linking B cell receptor to antigen specificity through sequencing), a technology for high-throughput mapping of paired heavy- and light-chain BCR sequences to their cognate antigen specificities. B cells are mixed with a panel of DNA-barcoded antigens so that both the antigen barcode(s) and BCR sequence are recovered via single-cell next-generation sequencing.

View Article and Find Full Text PDF