Publications by authors named "Kevin D Bladon"

Wildfires can dramatically alter vegetation cover and soil properties across large scales, resulting in substantial shifts in runoff generation, streamflow, and water quality. In September 2020, extensive and high-severity wildfires burned more than 490,000 ha of forest land on the westside of the Cascade Mountain Range in the Pacific Northwest. Much of the area impacted by these fires is critical for the provision of water for downstream aquatic ecosystems, agriculture, hydropower, recreation, and municipal drinking water.

View Article and Find Full Text PDF
Article Synopsis
  • Wildfire regimes are altering, raising concerns for aquatic ecosystems and fish species, as predicting fish responses can be complex due to multiple wildfire impacts.
  • Whole-ecosystem approaches like food web modeling can help understand these interactions, showing how different wildfire severities affect aquatic life dynamics in streams.
  • Simulations reveal that wildfires can have varying effects on periphyton, invertebrates, and fish biomass, influenced by fire severity and environmental changes, indicating a need to consider context when assessing wildfire impacts on aquatic ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • Increasing wildfire severity in the western U.S. affects the production and composition of dissolved organic matter (DOM), which is crucial for understanding its impact on ecosystems.
  • Current research on wildfire-affected DOM focuses on temperature, but this doesn't capture the full complexity of post-fire conditions characterized by burn severity.
  • This study used simulated burns to analyze DOM from various land cover types, revealing that burn severity alters DOM composition, leading to an increase in aromatic and nitrogen-containing compounds as severity rises, enhancing our understanding of DOM in real-world scenarios.
View Article and Find Full Text PDF

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns.

View Article and Find Full Text PDF
Article Synopsis
  • Fire is a critical part of ecosystems and a tool used by humans, but changing fire patterns due to climate change are causing serious problems for health and infrastructure.
  • The text emphasizes the need for collaborative and inclusive research efforts to address fire threats and to better understand both human and ecological systems.
  • It advocates for a shift towards integrative and predictive approaches in fire science to foster innovation and improve resilience to increasing fire risks in the Anthropocene.
View Article and Find Full Text PDF

The use of low-severity prescribed fires has been increasingly promoted to reduce the impacts from high-severity wildfires and maintain ecosystem resilience. However, the effects of prescribed fires on water quality have rarely been evaluated relative to the effects of wildfires. In this study, we assessed the effects of 54 wildfires and 11 prescribed fires on trace element (arsenic, selenium, and cadmium) concentrations of streams draining burned watersheds in the western US.

View Article and Find Full Text PDF

2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface.

View Article and Find Full Text PDF

Natural disturbances help maintain healthy forested and aquatic ecosystems. However, biotic and abiotic disturbance regimes are changing rapidly. For example, the Swiss needle cast (SNC) epidemic in the Coast Range of Oregon in the U.

View Article and Find Full Text PDF

Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States.

View Article and Find Full Text PDF

The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for human activities and ecosystems is required for sustainable development; however, no global assessment of wildfire impacts on water supply is currently available.

View Article and Find Full Text PDF

Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales.

View Article and Find Full Text PDF

In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue.

View Article and Find Full Text PDF

Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied.

View Article and Find Full Text PDF

Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.

View Article and Find Full Text PDF